![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: elex2OLD 3502 elex22 3503 disj 4455 disjne 4460 rabsneq 4648 elpr2g 4655 eqoreldif 4689 ordelinel 6486 onun2 6493 ssimaex 6993 fnex 7236 f1ocnv2d 7685 omun 7909 peano5 7915 mpoexw 8101 tfrlem8 8422 tz7.48-2 8480 tz7.49 8483 eroprf 8853 pssnn 9206 onfin 9264 ac6sfi 9317 elfiun 9467 brwdom 9604 ficardom 9998 ficard 10602 tskxpss 10809 inar1 10812 rankcf 10814 tskuni 10820 gruun 10843 nsmallnq 11014 prnmadd 11034 genpss 11041 mpoaddf 11246 mpomulf 11247 eqlei 11368 eqlei2 11369 renegcli 11567 supaddc 12232 supadd 12233 supmul1 12234 supmullem2 12236 supmul 12237 nn0ind-raph 12715 uzwo 12950 iccid 13428 hashvnfin 14395 hashdifsnp1 14541 mertenslem2 15917 4sqlem1 16981 4sqlem4 16985 4sqlem11 16988 symggen 19502 psgnran 19547 odlem1 19567 gexlem1 19611 gsumpr 19987 lssvneln0 20967 lss1d 20978 lspsn 21017 lsmelval2 21101 rnglidlmmgm 21272 psgnghm 21615 opnneiid 23149 cmpsublem 23422 metrest 24552 metustel 24578 dscopn 24601 ovolshftlem2 25558 subopnmbl 25652 deg1ldgn 26146 plyremlem 26360 coseq0negpitopi 26559 ppiublem1 27260 noextendseq 27726 bdayfo 27736 scutf 27871 addsproplem2 28017 mptelee 28924 nbuhgr2vtx1edgblem 29382 numclwwlk1lem2foa 30382 shsleji 31398 spansnss 31599 spansncvi 31680 f1o3d 32643 sigaclcu2 34100 measdivcstALTV 34205 dfon2lem6 35769 altxpsspw 35958 hfun 36159 ontgval 36413 ordtoplem 36417 ordcmp 36429 findreccl 36435 bj-xpnzex 36941 bj-snsetex 36945 bj-ismooredr2 37092 bj-ideqg1 37146 topdifinfindis 37328 finxpreclem1 37371 ovoliunnfl 37648 volsupnfl 37651 heibor1lem 37795 heibor1 37796 lshpkrlem1 39091 lfl1dim 39102 leat3 39276 meetat2 39278 glbconxN 39360 pointpsubN 39733 pmapglbx 39751 linepsubclN 39933 dia2dimlem7 41052 dib1dim2 41150 diclspsn 41176 dih1dimatlem 41311 dihatexv2 41321 djhlsmcl 41396 fsuppssind 42579 fltne 42630 3cubes 42677 hbtlem2 43112 hbtlem5 43116 rp-isfinite6 43507 snssiALTVD 44824 snssiALT 44825 elex2VD 44835 elex22VD 44836 upwordnul 46833 upwordsing 46837 tworepnotupword 46839 fveqvfvv 46989 afv0fv0 47098 lswn0 47368 1neven 48081 cznrng 48104 |
Copyright terms: Public domain | W3C validator |