![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 249 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2720 df-clel 2806 |
This theorem is referenced by: elex2OLD 3492 elex22 3493 disj 4444 disjne 4451 elpr2g 4649 eqoreldif 4685 ordelinel 6465 onun2 6472 ssimaex 6978 fnex 7224 f1ocnv2d 7669 omun 7888 peano5 7894 peano5OLD 7895 mpoexw 8078 tfrlem8 8399 tz7.48-2 8457 tz7.49 8460 eroprf 8828 pssnn 9187 onfin 9249 pssnnOLD 9284 ac6sfi 9306 elfiun 9448 brwdom 9585 ficardom 9979 ficard 10583 tskxpss 10790 inar1 10793 rankcf 10795 tskuni 10801 gruun 10824 nsmallnq 10995 prnmadd 11015 genpss 11022 mpoaddf 11227 mpomulf 11228 eqlei 11349 eqlei2 11350 renegcli 11546 supaddc 12206 supadd 12207 supmul1 12208 supmullem2 12210 supmul 12211 nn0ind-raph 12687 uzwo 12920 iccid 13396 hashvnfin 14346 hashdifsnp1 14484 mertenslem2 15858 4sqlem1 16911 4sqlem4 16915 4sqlem11 16918 symggen 19419 psgnran 19464 odlem1 19484 gexlem1 19528 gsumpr 19904 lssvneln0 20830 lss1d 20841 lspsn 20880 lsmelval2 20964 rnglidlmmgm 21134 psgnghm 21506 opnneiid 23024 cmpsublem 23297 metrest 24427 metustel 24453 dscopn 24476 ovolshftlem2 25433 subopnmbl 25527 deg1ldgn 26023 plyremlem 26233 coseq0negpitopi 26432 ppiublem1 27129 noextendseq 27594 bdayfo 27604 scutf 27739 addsproplem2 27881 mptelee 28700 nbuhgr2vtx1edgblem 29158 numclwwlk1lem2foa 30158 shsleji 31174 spansnss 31375 spansncvi 31456 f1o3d 32406 sigaclcu2 33734 measdivcstALTV 33839 dfon2lem6 35379 altxpsspw 35568 hfun 35769 ontgval 35910 ordtoplem 35914 ordcmp 35926 findreccl 35932 bj-xpnzex 36433 bj-snsetex 36437 bj-ismooredr2 36584 bj-ideqg1 36638 topdifinfindis 36820 finxpreclem1 36863 ovoliunnfl 37130 volsupnfl 37133 heibor1lem 37277 heibor1 37278 lshpkrlem1 38577 lfl1dim 38588 leat3 38762 meetat2 38764 glbconxN 38846 pointpsubN 39219 pmapglbx 39237 linepsubclN 39419 dia2dimlem7 40538 dib1dim2 40636 diclspsn 40662 dih1dimatlem 40797 dihatexv2 40807 djhlsmcl 40882 fsuppssind 41817 fltne 42059 3cubes 42101 hbtlem2 42539 hbtlem5 42543 rp-isfinite6 42939 snssiALTVD 44257 snssiALT 44258 elex2VD 44268 elex22VD 44269 upwordnul 46257 upwordsing 46261 tworepnotupword 46263 fveqvfvv 46413 afv0fv0 46520 lswn0 46775 1neven 47291 cznrng 47314 |
Copyright terms: Public domain | W3C validator |