| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elex22 3463 disj 4403 disjne 4408 rabsneq 4598 elpr2g 4605 eqoreldif 4639 ordelinel 6414 onun2 6421 ssimaex 6912 fnex 7157 f1ocnv2d 7606 omun 7828 peano5 7833 mpoexw 8020 tfrlem8 8313 tz7.48-2 8371 tz7.49 8374 eroprf 8749 pssnn 9092 onfin 9139 ac6sfi 9189 elfiun 9339 brwdom 9478 ficardom 9876 ficard 10478 tskxpss 10685 inar1 10688 rankcf 10690 tskuni 10696 gruun 10719 nsmallnq 10890 prnmadd 10910 genpss 10917 mpoaddf 11122 mpomulf 11123 eqlei 11244 eqlei2 11245 renegcli 11443 supaddc 12110 supadd 12111 supmul1 12112 supmullem2 12114 supmul 12115 nn0ind-raph 12594 uzwo 12830 iccid 13311 hashvnfin 14285 hashdifsnp1 14431 mertenslem2 15810 4sqlem1 16878 4sqlem4 16882 4sqlem11 16885 symggen 19367 psgnran 19412 odlem1 19432 gexlem1 19476 gsumpr 19852 lssvneln0 20873 lss1d 20884 lspsn 20923 lsmelval2 21007 rnglidlmmgm 21170 psgnghm 21505 opnneiid 23029 cmpsublem 23302 metrest 24428 metustel 24454 dscopn 24477 ovolshftlem2 25427 subopnmbl 25521 deg1ldgn 26014 plyremlem 26228 coseq0negpitopi 26428 ppiublem1 27129 noextendseq 27595 bdayfo 27605 scutf 27741 addsproplem2 27900 mptelee 28858 nbuhgr2vtx1edgblem 29314 numclwwlk1lem2foa 30316 shsleji 31332 spansnss 31533 spansncvi 31614 f1o3d 32584 sigaclcu2 34089 measdivcstALTV 34194 dfon2lem6 35764 altxpsspw 35953 hfun 36154 ontgval 36407 ordtoplem 36411 ordcmp 36423 findreccl 36429 bj-xpnzex 36935 bj-snsetex 36939 bj-ismooredr2 37086 bj-ideqg1 37140 topdifinfindis 37322 finxpreclem1 37365 ovoliunnfl 37644 volsupnfl 37647 heibor1lem 37791 heibor1 37792 lshpkrlem1 39091 lfl1dim 39102 leat3 39276 meetat2 39278 glbconxN 39360 pointpsubN 39733 pmapglbx 39751 linepsubclN 39933 dia2dimlem7 41052 dib1dim2 41150 diclspsn 41176 dih1dimatlem 41311 dihatexv2 41321 djhlsmcl 41396 fsuppssind 42569 fltne 42620 3cubes 42666 hbtlem2 43100 hbtlem5 43104 rp-isfinite6 43494 snssiALTVD 44803 snssiALT 44804 elex2VD 44814 elex22VD 44815 upwordnul 46865 upwordsing 46869 tworepnotupword 46871 fveqvfvv 47028 afv0fv0 47137 lswn0 47432 1neven 48226 cznrng 48249 |
| Copyright terms: Public domain | W3C validator |