Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 249 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: elex2 3443 elex22 3444 disj 4378 disjne 4385 elpr2g 4582 eqoreldif 4617 ordelinel 6349 onun2 6355 ssimaex 6835 fnex 7075 f1ocnv2d 7500 peano5 7714 peano5OLD 7715 mpoexw 7892 tfrlem8 8186 tz7.48-2 8243 tz7.49 8246 eroprf 8562 pssnn 8913 onfin 8944 pssnnOLD 8969 ac6sfi 8988 elfiun 9119 brwdom 9256 ficardom 9650 ficard 10252 tskxpss 10459 inar1 10462 rankcf 10464 tskuni 10470 gruun 10493 nsmallnq 10664 prnmadd 10684 genpss 10691 eqlei 11015 eqlei2 11016 renegcli 11212 supaddc 11872 supadd 11873 supmul1 11874 supmullem2 11876 supmul 11877 nn0ind-raph 12350 uzwo 12580 iccid 13053 hashvnfin 14003 hashdifsnp1 14138 mertenslem2 15525 4sqlem1 16577 4sqlem4 16581 4sqlem11 16584 symggen 18993 psgnran 19038 odlem1 19058 gexlem1 19099 gsumpr 19471 lssvneln0 20128 lss1d 20140 lspsn 20179 lsmelval2 20262 psgnghm 20697 opnneiid 22185 cmpsublem 22458 metrest 23586 metustel 23612 dscopn 23635 ovolshftlem2 24579 subopnmbl 24673 deg1ldgn 25163 plyremlem 25369 coseq0negpitopi 25565 ppiublem1 26255 mptelee 27166 nbuhgr2vtx1edgblem 27621 numclwwlk1lem2foa 28619 shsleji 29633 spansnss 29834 spansncvi 29915 f1o3d 30863 sigaclcu2 31988 measdivcstALTV 32093 dfon2lem6 33670 noextendseq 33797 bdayfo 33807 scutf 33933 altxpsspw 34206 hfun 34407 ontgval 34547 ordtoplem 34551 ordcmp 34563 findreccl 34569 bj-xpnzex 35076 bj-snsetex 35080 bj-ismooredr2 35208 bj-ideqg1 35262 topdifinfindis 35444 finxpreclem1 35487 ovoliunnfl 35746 volsupnfl 35749 heibor1lem 35894 heibor1 35895 lshpkrlem1 37051 lfl1dim 37062 leat3 37236 meetat2 37238 glbconxN 37319 pointpsubN 37692 pmapglbx 37710 linepsubclN 37892 dia2dimlem7 39011 dib1dim2 39109 diclspsn 39135 dih1dimatlem 39270 dihatexv2 39280 djhlsmcl 39355 fsuppssind 40205 fltne 40397 3cubes 40428 hbtlem2 40865 hbtlem5 40869 rp-isfinite6 41023 snssiALTVD 42336 snssiALT 42337 elex2VD 42347 elex22VD 42348 fveqvfvv 44421 afv0fv0 44528 lswn0 44784 lidlmmgm 45371 1neven 45378 cznrng 45401 |
Copyright terms: Public domain | W3C validator |