| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elex22 3472 disj 4413 disjne 4418 rabsneq 4608 elpr2g 4615 eqoreldif 4649 ordelinel 6435 onun2 6442 ssimaex 6946 fnex 7191 f1ocnv2d 7642 omun 7864 peano5 7869 mpoexw 8057 tfrlem8 8352 tz7.48-2 8410 tz7.49 8413 eroprf 8788 pssnn 9132 onfin 9179 ac6sfi 9231 elfiun 9381 brwdom 9520 ficardom 9914 ficard 10518 tskxpss 10725 inar1 10728 rankcf 10730 tskuni 10736 gruun 10759 nsmallnq 10930 prnmadd 10950 genpss 10957 mpoaddf 11162 mpomulf 11163 eqlei 11284 eqlei2 11285 renegcli 11483 supaddc 12150 supadd 12151 supmul1 12152 supmullem2 12154 supmul 12155 nn0ind-raph 12634 uzwo 12870 iccid 13351 hashvnfin 14325 hashdifsnp1 14471 mertenslem2 15851 4sqlem1 16919 4sqlem4 16923 4sqlem11 16926 symggen 19400 psgnran 19445 odlem1 19465 gexlem1 19509 gsumpr 19885 lssvneln0 20858 lss1d 20869 lspsn 20908 lsmelval2 20992 rnglidlmmgm 21155 psgnghm 21489 opnneiid 23013 cmpsublem 23286 metrest 24412 metustel 24438 dscopn 24461 ovolshftlem2 25411 subopnmbl 25505 deg1ldgn 25998 plyremlem 26212 coseq0negpitopi 26412 ppiublem1 27113 noextendseq 27579 bdayfo 27589 scutf 27724 addsproplem2 27877 mptelee 28822 nbuhgr2vtx1edgblem 29278 numclwwlk1lem2foa 30283 shsleji 31299 spansnss 31500 spansncvi 31581 f1o3d 32551 sigaclcu2 34110 measdivcstALTV 34215 dfon2lem6 35776 altxpsspw 35965 hfun 36166 ontgval 36419 ordtoplem 36423 ordcmp 36435 findreccl 36441 bj-xpnzex 36947 bj-snsetex 36951 bj-ismooredr2 37098 bj-ideqg1 37152 topdifinfindis 37334 finxpreclem1 37377 ovoliunnfl 37656 volsupnfl 37659 heibor1lem 37803 heibor1 37804 lshpkrlem1 39103 lfl1dim 39114 leat3 39288 meetat2 39290 glbconxN 39372 pointpsubN 39745 pmapglbx 39763 linepsubclN 39945 dia2dimlem7 41064 dib1dim2 41162 diclspsn 41188 dih1dimatlem 41323 dihatexv2 41333 djhlsmcl 41408 fsuppssind 42581 fltne 42632 3cubes 42678 hbtlem2 43113 hbtlem5 43117 rp-isfinite6 43507 snssiALTVD 44816 snssiALT 44817 elex2VD 44827 elex22VD 44828 upwordnul 46878 upwordsing 46882 tworepnotupword 46884 fveqvfvv 47041 afv0fv0 47150 lswn0 47445 1neven 48226 cznrng 48249 |
| Copyright terms: Public domain | W3C validator |