| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: elex22 3461 disjne 4405 rabsneq 4595 elpr2g 4602 eqoreldif 4638 ordelinel 6409 onun2 6416 ssimaex 6907 fnex 7151 f1ocnv2d 7599 omun 7818 peano5 7823 mpoexw 8010 tfrlem8 8303 tz7.48-2 8361 tz7.49 8364 eroprf 8739 pssnn 9078 onfin 9124 ac6sfi 9168 elfiun 9314 brwdom 9453 ficardom 9854 ficard 10456 tskxpss 10663 inar1 10666 rankcf 10668 tskuni 10674 gruun 10697 nsmallnq 10868 prnmadd 10888 genpss 10895 mpoaddf 11100 mpomulf 11101 eqlei 11223 eqlei2 11224 renegcli 11422 supaddc 12089 supadd 12090 supmul1 12091 supmullem2 12093 supmul 12094 nn0ind-raph 12573 uzwo 12809 iccid 13290 hashvnfin 14267 hashdifsnp1 14413 mertenslem2 15792 4sqlem1 16860 4sqlem4 16864 4sqlem11 16867 symggen 19383 psgnran 19428 odlem1 19448 gexlem1 19492 gsumpr 19868 lssvneln0 20886 lss1d 20897 lspsn 20936 lsmelval2 21020 rnglidlmmgm 21183 psgnghm 21518 opnneiid 23042 cmpsublem 23315 metrest 24440 metustel 24466 dscopn 24489 ovolshftlem2 25439 subopnmbl 25533 deg1ldgn 26026 plyremlem 26240 coseq0negpitopi 26440 ppiublem1 27141 noextendseq 27607 bdayfo 27617 scutf 27754 addsproplem2 27914 mptelee 28874 nbuhgr2vtx1edgblem 29330 numclwwlk1lem2foa 30332 shsleji 31348 spansnss 31549 spansncvi 31630 f1o3d 32606 sigaclcu2 34131 measdivcstALTV 34236 dfon2lem6 35828 altxpsspw 36017 hfun 36218 ontgval 36471 ordtoplem 36475 ordcmp 36487 findreccl 36493 bj-xpnzex 36999 bj-snsetex 37003 bj-ismooredr2 37150 bj-ideqg1 37204 topdifinfindis 37386 finxpreclem1 37429 ovoliunnfl 37708 volsupnfl 37711 heibor1lem 37855 heibor1 37856 lshpkrlem1 39155 lfl1dim 39166 leat3 39340 meetat2 39342 glbconxN 39423 pointpsubN 39796 pmapglbx 39814 linepsubclN 39996 dia2dimlem7 41115 dib1dim2 41213 diclspsn 41239 dih1dimatlem 41374 dihatexv2 41384 djhlsmcl 41459 fsuppssind 42632 fltne 42683 3cubes 42729 hbtlem2 43163 hbtlem5 43167 rp-isfinite6 43557 snssiALTVD 44865 snssiALT 44866 elex2VD 44876 elex22VD 44877 fveqvfvv 47077 afv0fv0 47186 lswn0 47481 1neven 48275 cznrng 48298 |
| Copyright terms: Public domain | W3C validator |