![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: elex2OLD 3513 elex22 3514 disj 4473 disjne 4478 rabsneq 4666 elpr2g 4673 eqoreldif 4708 ordelinel 6496 onun2 6503 ssimaex 7007 fnex 7254 f1ocnv2d 7703 omun 7926 peano5 7932 peano5OLD 7933 mpoexw 8119 tfrlem8 8440 tz7.48-2 8498 tz7.49 8501 eroprf 8873 pssnn 9234 onfin 9293 ac6sfi 9348 elfiun 9499 brwdom 9636 ficardom 10030 ficard 10634 tskxpss 10841 inar1 10844 rankcf 10846 tskuni 10852 gruun 10875 nsmallnq 11046 prnmadd 11066 genpss 11073 mpoaddf 11278 mpomulf 11279 eqlei 11400 eqlei2 11401 renegcli 11597 supaddc 12262 supadd 12263 supmul1 12264 supmullem2 12266 supmul 12267 nn0ind-raph 12743 uzwo 12976 iccid 13452 hashvnfin 14409 hashdifsnp1 14555 mertenslem2 15933 4sqlem1 16995 4sqlem4 16999 4sqlem11 17002 symggen 19512 psgnran 19557 odlem1 19577 gexlem1 19621 gsumpr 19997 lssvneln0 20973 lss1d 20984 lspsn 21023 lsmelval2 21107 rnglidlmmgm 21278 psgnghm 21621 opnneiid 23155 cmpsublem 23428 metrest 24558 metustel 24584 dscopn 24607 ovolshftlem2 25564 subopnmbl 25658 deg1ldgn 26152 plyremlem 26364 coseq0negpitopi 26563 ppiublem1 27264 noextendseq 27730 bdayfo 27740 scutf 27875 addsproplem2 28021 mptelee 28928 nbuhgr2vtx1edgblem 29386 numclwwlk1lem2foa 30386 shsleji 31402 spansnss 31603 spansncvi 31684 f1o3d 32646 sigaclcu2 34084 measdivcstALTV 34189 dfon2lem6 35752 altxpsspw 35941 hfun 36142 ontgval 36397 ordtoplem 36401 ordcmp 36413 findreccl 36419 bj-xpnzex 36925 bj-snsetex 36929 bj-ismooredr2 37076 bj-ideqg1 37130 topdifinfindis 37312 finxpreclem1 37355 ovoliunnfl 37622 volsupnfl 37625 heibor1lem 37769 heibor1 37770 lshpkrlem1 39066 lfl1dim 39077 leat3 39251 meetat2 39253 glbconxN 39335 pointpsubN 39708 pmapglbx 39726 linepsubclN 39908 dia2dimlem7 41027 dib1dim2 41125 diclspsn 41151 dih1dimatlem 41286 dihatexv2 41296 djhlsmcl 41371 fsuppssind 42548 fltne 42599 3cubes 42646 hbtlem2 43081 hbtlem5 43085 rp-isfinite6 43480 snssiALTVD 44798 snssiALT 44799 elex2VD 44809 elex22VD 44810 upwordnul 46799 upwordsing 46803 tworepnotupword 46805 fveqvfvv 46955 afv0fv0 47064 lswn0 47318 1neven 47961 cznrng 47984 |
Copyright terms: Public domain | W3C validator |