| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: elex22 3462 disjne 4404 rabsneq 4596 elpr2g 4603 eqoreldif 4639 ordelinel 6416 onun2 6423 ssimaex 6915 fnex 7159 f1ocnv2d 7607 omun 7826 peano5 7831 mpoexw 8018 tfrlem8 8311 tz7.48-2 8369 tz7.49 8372 eroprf 8747 pssnn 9087 onfin 9133 ac6sfi 9177 elfiun 9323 brwdom 9462 ficardom 9863 ficard 10465 tskxpss 10672 inar1 10675 rankcf 10677 tskuni 10683 gruun 10706 nsmallnq 10877 prnmadd 10897 genpss 10904 mpoaddf 11109 mpomulf 11110 eqlei 11232 eqlei2 11233 renegcli 11431 supaddc 12098 supadd 12099 supmul1 12100 supmullem2 12102 supmul 12103 nn0ind-raph 12581 uzwo 12813 iccid 13294 hashvnfin 14271 hashdifsnp1 14417 mertenslem2 15796 4sqlem1 16864 4sqlem4 16868 4sqlem11 16871 symggen 19386 psgnran 19431 odlem1 19451 gexlem1 19495 gsumpr 19871 lssvneln0 20889 lss1d 20900 lspsn 20939 lsmelval2 21023 rnglidlmmgm 21186 psgnghm 21521 opnneiid 23044 cmpsublem 23317 metrest 24442 metustel 24468 dscopn 24491 ovolshftlem2 25441 subopnmbl 25535 deg1ldgn 26028 plyremlem 26242 coseq0negpitopi 26442 ppiublem1 27143 noextendseq 27609 bdayfo 27619 scutf 27756 addsproplem2 27916 mpteleeOLD 28877 nbuhgr2vtx1edgblem 29333 numclwwlk1lem2foa 30338 shsleji 31354 spansnss 31555 spansncvi 31636 f1o3d 32612 sigaclcu2 34156 measdivcstALTV 34261 dfon2lem6 35853 altxpsspw 36044 hfun 36245 ontgval 36498 ordtoplem 36502 ordcmp 36514 findreccl 36520 bj-xpnzex 37026 bj-snsetex 37030 bj-ismooredr2 37177 bj-ideqg1 37231 topdifinfindis 37413 finxpreclem1 37456 ovoliunnfl 37725 volsupnfl 37728 heibor1lem 37872 heibor1 37873 lshpkrlem1 39232 lfl1dim 39243 leat3 39417 meetat2 39419 glbconxN 39500 pointpsubN 39873 pmapglbx 39891 linepsubclN 40073 dia2dimlem7 41192 dib1dim2 41290 diclspsn 41316 dih1dimatlem 41451 dihatexv2 41461 djhlsmcl 41536 fsuppssind 42714 fltne 42765 3cubes 42810 hbtlem2 43244 hbtlem5 43248 rp-isfinite6 43638 snssiALTVD 44946 snssiALT 44947 elex2VD 44957 elex22VD 44958 fveqvfvv 47167 afv0fv0 47276 lswn0 47571 1neven 48365 cznrng 48388 |
| Copyright terms: Public domain | W3C validator |