| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: elex2OLD 3484 elex22 3485 disj 4425 disjne 4430 rabsneq 4620 elpr2g 4627 eqoreldif 4661 ordelinel 6455 onun2 6462 ssimaex 6964 fnex 7209 f1ocnv2d 7660 omun 7883 peano5 7889 mpoexw 8077 tfrlem8 8398 tz7.48-2 8456 tz7.49 8459 eroprf 8829 pssnn 9182 onfin 9239 ac6sfi 9292 elfiun 9442 brwdom 9581 ficardom 9975 ficard 10579 tskxpss 10786 inar1 10789 rankcf 10791 tskuni 10797 gruun 10820 nsmallnq 10991 prnmadd 11011 genpss 11018 mpoaddf 11223 mpomulf 11224 eqlei 11345 eqlei2 11346 renegcli 11544 supaddc 12209 supadd 12210 supmul1 12211 supmullem2 12213 supmul 12214 nn0ind-raph 12693 uzwo 12927 iccid 13407 hashvnfin 14378 hashdifsnp1 14524 mertenslem2 15901 4sqlem1 16968 4sqlem4 16972 4sqlem11 16975 symggen 19451 psgnran 19496 odlem1 19516 gexlem1 19560 gsumpr 19936 lssvneln0 20909 lss1d 20920 lspsn 20959 lsmelval2 21043 rnglidlmmgm 21206 psgnghm 21540 opnneiid 23064 cmpsublem 23337 metrest 24463 metustel 24489 dscopn 24512 ovolshftlem2 25463 subopnmbl 25557 deg1ldgn 26050 plyremlem 26264 coseq0negpitopi 26464 ppiublem1 27165 noextendseq 27631 bdayfo 27641 scutf 27776 addsproplem2 27929 mptelee 28874 nbuhgr2vtx1edgblem 29330 numclwwlk1lem2foa 30335 shsleji 31351 spansnss 31552 spansncvi 31633 f1o3d 32605 sigaclcu2 34151 measdivcstALTV 34256 dfon2lem6 35806 altxpsspw 35995 hfun 36196 ontgval 36449 ordtoplem 36453 ordcmp 36465 findreccl 36471 bj-xpnzex 36977 bj-snsetex 36981 bj-ismooredr2 37128 bj-ideqg1 37182 topdifinfindis 37364 finxpreclem1 37407 ovoliunnfl 37686 volsupnfl 37689 heibor1lem 37833 heibor1 37834 lshpkrlem1 39128 lfl1dim 39139 leat3 39313 meetat2 39315 glbconxN 39397 pointpsubN 39770 pmapglbx 39788 linepsubclN 39970 dia2dimlem7 41089 dib1dim2 41187 diclspsn 41213 dih1dimatlem 41348 dihatexv2 41358 djhlsmcl 41433 fsuppssind 42616 fltne 42667 3cubes 42713 hbtlem2 43148 hbtlem5 43152 rp-isfinite6 43542 snssiALTVD 44851 snssiALT 44852 elex2VD 44862 elex22VD 44863 upwordnul 46909 upwordsing 46913 tworepnotupword 46915 fveqvfvv 47069 afv0fv0 47178 lswn0 47458 1neven 48213 cznrng 48236 |
| Copyright terms: Public domain | W3C validator |