| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq1a | Structured version Visualization version GIF version | ||
| Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| eleq1a | ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝐶 = 𝐴 → (𝐶 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | biimprcd 250 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 = 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elex22 3475 disj 4416 disjne 4421 rabsneq 4611 elpr2g 4618 eqoreldif 4652 ordelinel 6438 onun2 6445 ssimaex 6949 fnex 7194 f1ocnv2d 7645 omun 7867 peano5 7872 mpoexw 8060 tfrlem8 8355 tz7.48-2 8413 tz7.49 8416 eroprf 8791 pssnn 9138 onfin 9185 ac6sfi 9238 elfiun 9388 brwdom 9527 ficardom 9921 ficard 10525 tskxpss 10732 inar1 10735 rankcf 10737 tskuni 10743 gruun 10766 nsmallnq 10937 prnmadd 10957 genpss 10964 mpoaddf 11169 mpomulf 11170 eqlei 11291 eqlei2 11292 renegcli 11490 supaddc 12157 supadd 12158 supmul1 12159 supmullem2 12161 supmul 12162 nn0ind-raph 12641 uzwo 12877 iccid 13358 hashvnfin 14332 hashdifsnp1 14478 mertenslem2 15858 4sqlem1 16926 4sqlem4 16930 4sqlem11 16933 symggen 19407 psgnran 19452 odlem1 19472 gexlem1 19516 gsumpr 19892 lssvneln0 20865 lss1d 20876 lspsn 20915 lsmelval2 20999 rnglidlmmgm 21162 psgnghm 21496 opnneiid 23020 cmpsublem 23293 metrest 24419 metustel 24445 dscopn 24468 ovolshftlem2 25418 subopnmbl 25512 deg1ldgn 26005 plyremlem 26219 coseq0negpitopi 26419 ppiublem1 27120 noextendseq 27586 bdayfo 27596 scutf 27731 addsproplem2 27884 mptelee 28829 nbuhgr2vtx1edgblem 29285 numclwwlk1lem2foa 30290 shsleji 31306 spansnss 31507 spansncvi 31588 f1o3d 32558 sigaclcu2 34117 measdivcstALTV 34222 dfon2lem6 35783 altxpsspw 35972 hfun 36173 ontgval 36426 ordtoplem 36430 ordcmp 36442 findreccl 36448 bj-xpnzex 36954 bj-snsetex 36958 bj-ismooredr2 37105 bj-ideqg1 37159 topdifinfindis 37341 finxpreclem1 37384 ovoliunnfl 37663 volsupnfl 37666 heibor1lem 37810 heibor1 37811 lshpkrlem1 39110 lfl1dim 39121 leat3 39295 meetat2 39297 glbconxN 39379 pointpsubN 39752 pmapglbx 39770 linepsubclN 39952 dia2dimlem7 41071 dib1dim2 41169 diclspsn 41195 dih1dimatlem 41330 dihatexv2 41340 djhlsmcl 41415 fsuppssind 42588 fltne 42639 3cubes 42685 hbtlem2 43120 hbtlem5 43124 rp-isfinite6 43514 snssiALTVD 44823 snssiALT 44824 elex2VD 44834 elex22VD 44835 upwordnul 46885 upwordsing 46889 tworepnotupword 46891 fveqvfvv 47045 afv0fv0 47154 lswn0 47449 1neven 48230 cznrng 48253 |
| Copyright terms: Public domain | W3C validator |