MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elex2OLD Structured version   Visualization version   GIF version

Theorem elex2OLD 3495
Description: Obsolete version of elex2 2811 as of 30-Nov-2024. (Contributed by Alan Sare, 25-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elex2OLD (𝐴𝐵 → ∃𝑥 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elex2OLD
StepHypRef Expression
1 eleq1a 2827 . . 3 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
21alrimiv 1929 . 2 (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝑥𝐵))
3 elisset 2814 . 2 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
4 exim 1835 . 2 (∀𝑥(𝑥 = 𝐴𝑥𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥𝐵))
52, 3, 4sylc 65 1 (𝐴𝐵 → ∃𝑥 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wex 1780  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator