MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elex2OLD Structured version   Visualization version   GIF version

Theorem elex2OLD 3489
Description: Obsolete version of elex2 2812 as of 30-Nov-2024. (Contributed by Alan Sare, 25-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elex2OLD (𝐴𝐵 → ∃𝑥 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elex2OLD
StepHypRef Expression
1 eleq1a 2830 . . 3 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
21alrimiv 1927 . 2 (𝐴𝐵 → ∀𝑥(𝑥 = 𝐴𝑥𝐵))
3 elisset 2817 . 2 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
4 exim 1834 . 2 (∀𝑥(𝑥 = 𝐴𝑥𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥𝐵))
52, 3, 4sylc 65 1 (𝐴𝐵 → ∃𝑥 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator