Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6bir | Structured version Visualization version GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
syl6bir.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bir | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bir.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ralnralall 4446 elinsn 4643 tppreqb 4735 sotri2 6023 sotri3 6024 somincom 6028 fnun 6529 fvmpti 6856 ovigg 7396 ndmovg 7433 onint 7617 ordsuc 7636 tfindsg 7682 findsg 7720 zfrep6 7771 extmptsuppeq 7975 tfrlem9 8187 tfr3 8201 omlimcl 8371 oneo 8374 nnneo 8445 pssnn 8913 pssnnOLD 8969 inficl 9114 updjud 9623 dfac2b 9817 axdc2lem 10135 axextnd 10278 canthp1lem2 10340 gchinf 10344 inatsk 10465 indpi 10594 ltaddpr2 10722 reclem2pr 10735 supsrlem 10798 axrrecex 10850 zeo 12336 nn0ind-raph 12350 fzm1 13265 fzind2 13433 addmodlteq 13594 bcpasc 13963 pr2pwpr 14121 swrdnnn0nd 14297 pwdif 15508 oddnn02np1 15985 oddge22np1 15986 evennn02n 15987 evennn2n 15988 bitsfzo 16070 bezoutlem1 16175 algcvgblem 16210 coprmdvds1 16285 qredeq 16290 prmreclem2 16546 ramtcl2 16640 divsfval 17175 joinval 18010 meetval 18024 gsumval3 19423 pgpfac1lem3a 19594 fiinopn 21958 restntr 22241 lly1stc 22555 dgradd2 25334 dgrcolem2 25340 asinneg 25941 ftalem2 26128 ftalem4 26130 ftalem5 26131 bpos1lem 26335 zabsle1 26349 lgsqrmodndvds 26406 incistruhgr 27352 fusgrfis 27600 uhgrnbgr0nb 27624 cusgrrusgr 27851 wlkswwlksf1o 28145 isclwwlknx 28301 clwwlknwwlksnb 28320 clwlknf1oclwwlknlem1 28346 frgrwopreglem3 28579 frgrreg 28659 frgrregord013 28660 h1de2ctlem 29818 pjclem4a 30461 pj3lem1 30469 chrelat2i 30628 sumdmdii 30678 elim2if 30788 bnj1468 32726 bnj517 32765 acycgrislfgr 33014 axextdist 33681 poxp2 33717 poxp3 33723 funtransport 34260 bj-19.21t0 34940 bj-projval 35113 areacirc 35797 rngoueqz 36025 isdmn3 36159 ax12fromc15 36846 lkrlspeqN 37112 hlrelat2 37344 ps-1 37418 dalem54 37667 cdleme42c 38413 dihmeetlem6 39250 frege124d 41258 uneqsn 41522 iotavalb 41937 2reuimp 44494 afv2orxorb 44607 iccpartnel 44778 fargshiftf1 44781 gbowge7 45103 sbgoldbwt 45117 bgoldbtbndlem1 45145 uspgrsprf1 45197 |
Copyright terms: Public domain | W3C validator |