Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable-abelv | Structured version Visualization version GIF version |
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eliminable-abelv | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2812 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) | |
2 | eliminable-veqab 35078 | . . . 4 ⊢ (𝑧 = {𝑥 ∣ 𝜑} ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑)) | |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ (∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
4 | 3 | exbii 1846 | . 2 ⊢ (∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
5 | 1, 4 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 [wsb 2062 ∈ wcel 2101 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1778 df-clab 2711 df-cleq 2725 df-clel 2811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |