| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable-abelv | Structured version Visualization version GIF version | ||
| Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eliminable-abelv | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclel 2816 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) | |
| 2 | eliminable-veqab 36860 | . . . 4 ⊢ (𝑧 = {𝑥 ∣ 𝜑} ↔ ∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑)) | |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ (∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
| 4 | 3 | exbii 1848 | . 2 ⊢ (∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 [wsb 2064 ∈ wcel 2108 {cab 2713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2714 df-cleq 2728 df-clel 2815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |