Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliminable-abelv Structured version   Visualization version   GIF version

Theorem eliminable-abelv 34980
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eliminable-abelv ({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
Distinct variable groups:   𝑥,𝑡,𝑧   𝑦,𝑧   𝜑,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eliminable-abelv
StepHypRef Expression
1 dfclel 2818 . 2 ({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦))
2 eliminable-veqab 34977 . . . 4 (𝑧 = {𝑥𝜑} ↔ ∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑))
32anbi1i 623 . . 3 ((𝑧 = {𝑥𝜑} ∧ 𝑧𝑦) ↔ (∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
43exbii 1851 . 2 (∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦) ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
51, 4bitri 274 1 ({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator