Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable-abeqab | Structured version Visualization version GIF version |
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eliminable-abeqab | ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓})) | |
2 | eliminable-velab 35049 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
3 | eliminable-velab 35049 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
4 | 2, 3 | bibi12i 340 | . . 3 ⊢ ((𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) ↔ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
5 | 4 | albii 1822 | . 2 ⊢ (∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
6 | 1, 5 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clab 2716 df-cleq 2730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |