|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable-abeqab | Structured version Visualization version GIF version | ||
| Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| eliminable-abeqab | ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfcleq 2730 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓})) | |
| 2 | eliminable-velab 36866 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 3 | eliminable-velab 36866 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 4 | 2, 3 | bibi12i 339 | . . 3 ⊢ ((𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) ↔ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | 
| 5 | 4 | albii 1819 | . 2 ⊢ (∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | 
| 6 | 1, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2714 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2715 df-cleq 2729 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |