Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliminable-veqab Structured version   Visualization version   GIF version

Theorem eliminable-veqab 35078
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eliminable-veqab (𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eliminable-veqab
StepHypRef Expression
1 dfcleq 2726 . 2 (𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝜑}))
2 eliminable-velab 35077 . . . 4 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
32bibi2i 337 . . 3 ((𝑧𝑥𝑧 ∈ {𝑦𝜑}) ↔ (𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
43albii 1817 . 2 (∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝜑}) ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
51, 4bitri 274 1 (𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1535   = wceq 1537  [wsb 2062  wcel 2101  {cab 2710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2111  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1778  df-clab 2711  df-cleq 2725
This theorem is referenced by:  eliminable-abelv  35081  eliminable-abelab  35082
  Copyright terms: Public domain W3C validator