Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable-abeqv | Structured version Visualization version GIF version |
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eliminable-abeqv | ⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2729 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ 𝑦)) | |
2 | eliminable-velab 35144 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
3 | 2 | bibi1i 338 | . . 3 ⊢ ((𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ 𝑦) ↔ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1820 | . 2 ⊢ (∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) |
5 | 1, 4 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1538 = wceq 1540 [wsb 2066 ∈ wcel 2105 {cab 2713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-clab 2714 df-cleq 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |