Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliminable-abeqv Structured version   Visualization version   GIF version

Theorem eliminable-abeqv 36833
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eliminable-abeqv ({𝑥𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eliminable-abeqv
StepHypRef Expression
1 dfcleq 2733 . 2 ({𝑥𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦))
2 eliminable-velab 36831 . . . 4 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
32bibi1i 338 . . 3 ((𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦) ↔ ([𝑧 / 𝑥]𝜑𝑧𝑦))
43albii 1817 . 2 (∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦) ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
51, 4bitri 275 1 ({𝑥𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  [wsb 2064  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clab 2718  df-cleq 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator