| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimne0 | Structured version Visualization version GIF version | ||
| Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimne0 | ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 2990 | . 2 ⊢ (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
| 2 | neeq1 2990 | . 2 ⊢ (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
| 3 | ax-1ne0 11070 | . 2 ⊢ 1 ≠ 0 | |
| 4 | 1, 2, 3 | elimhyp 4536 | 1 ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ifcif 4470 0cc0 11001 1c1 11002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1ne0 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-if 4471 |
| This theorem is referenced by: sqdivzi 35764 |
| Copyright terms: Public domain | W3C validator |