![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimne0 | Structured version Visualization version GIF version |
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimne0 | ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2992 | . 2 ⊢ (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
2 | neeq1 2992 | . 2 ⊢ (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
3 | ax-1ne0 11209 | . 2 ⊢ 1 ≠ 0 | |
4 | 1, 2, 3 | elimhyp 4595 | 1 ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2929 ifcif 4530 0cc0 11140 1c1 11141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-1ne0 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-if 4531 |
This theorem is referenced by: sqdivzi 35453 |
Copyright terms: Public domain | W3C validator |