Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimne0 | Structured version Visualization version GIF version |
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimne0 | ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3007 | . 2 ⊢ (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
2 | neeq1 3007 | . 2 ⊢ (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0)) | |
3 | ax-1ne0 10924 | . 2 ⊢ 1 ≠ 0 | |
4 | 1, 2, 3 | elimhyp 4529 | 1 ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ifcif 4464 0cc0 10855 1c1 10856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1ne0 10924 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-if 4465 |
This theorem is referenced by: sqdivzi 33672 |
Copyright terms: Public domain | W3C validator |