MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimne0 Structured version   Visualization version   GIF version

Theorem elimne0 11236
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.)
Assertion
Ref Expression
elimne0 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0

Proof of Theorem elimne0
StepHypRef Expression
1 neeq1 2992 . 2 (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
2 neeq1 2992 . 2 (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
3 ax-1ne0 11209 . 2 1 ≠ 0
41, 2, 3elimhyp 4595 1 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wne 2929  ifcif 4530  0cc0 11140  1c1 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-1ne0 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-if 4531
This theorem is referenced by:  sqdivzi  35453
  Copyright terms: Public domain W3C validator