MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimne0 Structured version   Visualization version   GIF version

Theorem elimne0 11208
Description: Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.)
Assertion
Ref Expression
elimne0 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0

Proof of Theorem elimne0
StepHypRef Expression
1 neeq1 3001 . 2 (𝐴 = if(𝐴 ≠ 0, 𝐴, 1) → (𝐴 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
2 neeq1 3001 . 2 (1 = if(𝐴 ≠ 0, 𝐴, 1) → (1 ≠ 0 ↔ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0))
3 ax-1ne0 11181 . 2 1 ≠ 0
41, 2, 3elimhyp 4592 1 if(𝐴 ≠ 0, 𝐴, 1) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  wne 2938  ifcif 4527  0cc0 11112  1c1 11113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-1ne0 11181
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-if 4528
This theorem is referenced by:  sqdivzi  35001
  Copyright terms: Public domain W3C validator