| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddir | Structured version Visualization version GIF version | ||
| Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| Ref | Expression |
|---|---|
| adddir | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddi 11223 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) | |
| 2 | 1 | 3coml 1127 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) |
| 3 | addcl 11216 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | mulcom 11220 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵))) | |
| 5 | 3, 4 | stoic3 1776 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵))) |
| 6 | mulcom 11220 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) | |
| 7 | 6 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴)) |
| 8 | mulcom 11220 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) | |
| 9 | 8 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 10 | 7, 9 | oveq12d 7428 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵))) |
| 11 | 2, 5, 10 | 3eqtr4d 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 + caddc 11137 · cmul 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-addcl 11194 ax-mulcom 11198 ax-distr 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: mulrid 11238 adddiri 11253 adddird 11265 muladd11 11410 00id 11415 cnegex2 11422 muladd 11674 ser1const 14081 hashxplem 14456 demoivreALT 16224 dvds2ln 16313 dvds2add 16314 odd2np1lem 16364 cncrng 21356 cncrngOLD 21357 icccvx 24904 cnlmod 25096 sincosq1eq 26478 abssinper 26487 sineq0 26490 bposlem9 27260 cncvcOLD 30569 ipasslem1 30817 ipasslem11 30826 cdj3i 32427 mblfinlem3 37688 expgrowth 44326 fmtnofac2lem 47549 2zrngALT 48196 |
| Copyright terms: Public domain | W3C validator |