MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddir Structured version   Visualization version   GIF version

Theorem adddir 11147
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)))

Proof of Theorem adddir
StepHypRef Expression
1 adddi 11141 . . 3 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด + ๐ต)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
213coml 1128 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด + ๐ต)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
3 addcl 11134 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) โˆˆ โ„‚)
4 mulcom 11138 . . 3 (((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด + ๐ต)))
53, 4stoic3 1779 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด + ๐ต)))
6 mulcom 11138 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
763adant2 1132 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
8 mulcom 11138 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
983adant1 1131 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
107, 9oveq12d 7376 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
112, 5, 103eqtr4d 2787 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7358  โ„‚cc 11050   + caddc 11055   ยท cmul 11057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-addcl 11112  ax-mulcom 11116  ax-distr 11119
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-ov 7361
This theorem is referenced by:  mulid1  11154  adddiri  11169  adddird  11181  muladd11  11326  00id  11331  cnegex2  11338  muladd  11588  ser1const  13965  hashxplem  14334  demoivreALT  16084  dvds2ln  16172  dvds2add  16173  odd2np1lem  16223  cncrng  20821  icccvx  24316  cnlmod  24506  sincosq1eq  25872  abssinper  25880  sineq0  25883  bposlem9  26643  cncvcOLD  29528  ipasslem1  29776  ipasslem11  29785  cdj3i  31386  mblfinlem3  36120  expgrowth  42622  fmtnofac2lem  45767  2zrngALT  46253
  Copyright terms: Public domain W3C validator