MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddir Structured version   Visualization version   GIF version

Theorem adddir 10966
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))

Proof of Theorem adddir
StepHypRef Expression
1 adddi 10960 . . 3 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
213coml 1126 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
3 addcl 10953 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 mulcom 10957 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵)))
53, 4stoic3 1779 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵)))
6 mulcom 10957 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
763adant2 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
8 mulcom 10957 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
983adant1 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
107, 9oveq12d 7293 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
112, 5, 103eqtr4d 2788 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869   + caddc 10874   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-addcl 10931  ax-mulcom 10935  ax-distr 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  mulid1  10973  adddiri  10988  adddird  11000  muladd11  11145  00id  11150  cnegex2  11157  muladd  11407  ser1const  13779  hashxplem  14148  demoivreALT  15910  dvds2ln  15998  dvds2add  15999  odd2np1lem  16049  cncrng  20619  icccvx  24113  cnlmod  24303  sincosq1eq  25669  abssinper  25677  sineq0  25680  bposlem9  26440  cncvcOLD  28945  ipasslem1  29193  ipasslem11  29202  cdj3i  30803  mblfinlem3  35816  expgrowth  41953  fmtnofac2lem  45020  2zrngALT  45506
  Copyright terms: Public domain W3C validator