MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddir Structured version   Visualization version   GIF version

Theorem adddir 11253
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))

Proof of Theorem adddir
StepHypRef Expression
1 adddi 11245 . . 3 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
213coml 1127 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · (𝐴 + 𝐵)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
3 addcl 11238 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 mulcom 11242 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵)))
53, 4stoic3 1775 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = (𝐶 · (𝐴 + 𝐵)))
6 mulcom 11242 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
763adant2 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) = (𝐶 · 𝐴))
8 mulcom 11242 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
983adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
107, 9oveq12d 7450 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) = ((𝐶 · 𝐴) + (𝐶 · 𝐵)))
112, 5, 103eqtr4d 2786 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7432  cc 11154   + caddc 11159   · cmul 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-addcl 11216  ax-mulcom 11220  ax-distr 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by:  mulrid  11260  adddiri  11275  adddird  11287  muladd11  11432  00id  11437  cnegex2  11444  muladd  11696  ser1const  14100  hashxplem  14473  demoivreALT  16238  dvds2ln  16327  dvds2add  16328  odd2np1lem  16378  cncrng  21402  cncrngOLD  21403  icccvx  24982  cnlmod  25174  sincosq1eq  26555  abssinper  26564  sineq0  26567  bposlem9  27337  cncvcOLD  30603  ipasslem1  30851  ipasslem11  30860  cdj3i  32461  mblfinlem3  37667  expgrowth  44359  fmtnofac2lem  47560  2zrngALT  48175
  Copyright terms: Public domain W3C validator