MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddir Structured version   Visualization version   GIF version

Theorem adddir 11209
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)))

Proof of Theorem adddir
StepHypRef Expression
1 adddi 11201 . . 3 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด + ๐ต)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
213coml 1127 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด + ๐ต)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
3 addcl 11194 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด + ๐ต) โˆˆ โ„‚)
4 mulcom 11198 . . 3 (((๐ด + ๐ต) โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด + ๐ต)))
53, 4stoic3 1778 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด + ๐ต)))
6 mulcom 11198 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
763adant2 1131 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
8 mulcom 11198 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
983adant1 1130 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
107, 9oveq12d 7429 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)) = ((๐ถ ยท ๐ด) + (๐ถ ยท ๐ต)))
112, 5, 103eqtr4d 2782 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) + (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106  (class class class)co 7411  โ„‚cc 11110   + caddc 11115   ยท cmul 11117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-addcl 11172  ax-mulcom 11176  ax-distr 11179
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414
This theorem is referenced by:  mulrid  11216  adddiri  11231  adddird  11243  muladd11  11388  00id  11393  cnegex2  11400  muladd  11650  ser1const  14028  hashxplem  14397  demoivreALT  16148  dvds2ln  16236  dvds2add  16237  odd2np1lem  16287  cncrng  21166  icccvx  24690  cnlmod  24880  sincosq1eq  26246  abssinper  26254  sineq0  26257  bposlem9  27019  cncvcOLD  30091  ipasslem1  30339  ipasslem11  30348  cdj3i  31949  gg-cncrng  35486  mblfinlem3  36830  expgrowth  43396  fmtnofac2lem  46535  2zrngALT  46935
  Copyright terms: Public domain W3C validator