Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) (Proof shortened by Wolf Lammen, 18-Nov-2019.) |
Ref | Expression |
---|---|
neeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | neeq1d 3004 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
Copyright terms: Public domain | W3C validator |