MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp Structured version   Visualization version   GIF version

Theorem elimhyp 4557
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4550. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
elimhyp.2 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
elimhyp.3 𝜒
Assertion
Ref Expression
elimhyp 𝜓

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 4497 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21eqcomd 2736 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
3 elimhyp.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
42, 3syl 17 . . 3 (𝜑 → (𝜑𝜓))
54ibi 267 . 2 (𝜑𝜓)
6 elimhyp.3 . . 3 𝜒
7 iffalse 4500 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
87eqcomd 2736 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
9 elimhyp.2 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
108, 9syl 17 . . 3 𝜑 → (𝜒𝜓))
116, 10mpbii 233 . 2 𝜑𝜓)
125, 11pm2.61i 182 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  ifcif 4491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-if 4492
This theorem is referenced by:  elimel  4561  elimf  6690  oeoa  8564  oeoe  8566  limensuc  9124  axcc4dom  10401  elimne0  11171  elimgt0  12027  elimge0  12028  2ndcdisj  23350  siilem2  30788  normlem7tALT  31055  hhsssh  31205  shintcl  31266  chintcl  31268  spanun  31481  elunop2  31949  lnophm  31955  nmbdfnlb  31986  hmopidmch  32089  hmopidmpj  32090  chirred  32331  limsucncmp  36441  elimhyps  38961  elimhyps2  38964
  Copyright terms: Public domain W3C validator