![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4586. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
elimhyp.3 | ⊢ 𝜒 |
Ref | Expression |
---|---|
elimhyp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4534 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
7 | iffalse 4537 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2737 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
11 | 6, 10 | mpbii 232 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-if 4529 |
This theorem is referenced by: elimel 4597 elimf 6716 oeoa 8601 oeoe 8603 limensuc 9158 axcc4dom 10440 elimne0 11209 elimgt0 12057 elimge0 12058 2ndcdisj 23181 siilem2 30373 normlem7tALT 30640 hhsssh 30790 shintcl 30851 chintcl 30853 spanun 31066 elunop2 31534 lnophm 31540 nmbdfnlb 31571 hmopidmch 31674 hmopidmpj 31675 chirred 31916 limsucncmp 35635 elimhyps 38135 elimhyps2 38138 |
Copyright terms: Public domain | W3C validator |