| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version | ||
| Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4537. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
| elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
| elimhyp.3 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| elimhyp | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4484 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
| 6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
| 7 | iffalse 4487 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2735 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
| 11 | 6, 10 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
| 12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: elimel 4548 elimf 6655 oeoa 8522 oeoe 8524 limensuc 9078 axcc4dom 10354 elimne0 11124 elimgt0 11980 elimge0 11981 2ndcdisj 23359 siilem2 30814 normlem7tALT 31081 hhsssh 31231 shintcl 31292 chintcl 31294 spanun 31507 elunop2 31975 lnophm 31981 nmbdfnlb 32012 hmopidmch 32115 hmopidmpj 32116 chirred 32357 limsucncmp 36419 elimhyps 38939 elimhyps2 38942 |
| Copyright terms: Public domain | W3C validator |