| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version | ||
| Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4559. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
| elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
| elimhyp.3 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| elimhyp | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
| 6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
| 7 | iffalse 4509 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2741 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
| 11 | 6, 10 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
| 12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: elimel 4570 elimf 6705 oeoa 8609 oeoe 8611 limensuc 9168 axcc4dom 10455 elimne0 11225 elimgt0 12079 elimge0 12080 2ndcdisj 23394 siilem2 30833 normlem7tALT 31100 hhsssh 31250 shintcl 31311 chintcl 31313 spanun 31526 elunop2 31994 lnophm 32000 nmbdfnlb 32031 hmopidmch 32134 hmopidmpj 32135 chirred 32376 limsucncmp 36464 elimhyps 38979 elimhyps2 38982 |
| Copyright terms: Public domain | W3C validator |