MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp Structured version   Visualization version   GIF version

Theorem elimhyp 4541
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4534. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
elimhyp.2 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
elimhyp.3 𝜒
Assertion
Ref Expression
elimhyp 𝜓

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 4481 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21eqcomd 2737 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
3 elimhyp.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
42, 3syl 17 . . 3 (𝜑 → (𝜑𝜓))
54ibi 267 . 2 (𝜑𝜓)
6 elimhyp.3 . . 3 𝜒
7 iffalse 4484 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
87eqcomd 2737 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
9 elimhyp.2 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
108, 9syl 17 . . 3 𝜑 → (𝜒𝜓))
116, 10mpbii 233 . 2 𝜑𝜓)
125, 11pm2.61i 182 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  ifcif 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4476
This theorem is referenced by:  elimel  4545  elimf  6650  oeoa  8512  oeoe  8514  limensuc  9067  axcc4dom  10329  elimne0  11099  elimgt0  11956  elimge0  11957  2ndcdisj  23369  siilem2  30827  normlem7tALT  31094  hhsssh  31244  shintcl  31305  chintcl  31307  spanun  31520  elunop2  31988  lnophm  31994  nmbdfnlb  32025  hmopidmch  32128  hmopidmpj  32129  chirred  32370  limsucncmp  36479  elimhyps  38999  elimhyps2  39002
  Copyright terms: Public domain W3C validator