| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version | ||
| Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4533. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
| elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
| elimhyp.3 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| elimhyp | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4480 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
| 6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
| 7 | iffalse 4483 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2739 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
| 11 | 6, 10 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
| 12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4475 |
| This theorem is referenced by: elimel 4544 elimf 6655 oeoa 8518 oeoe 8520 limensuc 9074 axcc4dom 10339 elimne0 11109 elimgt0 11966 elimge0 11967 2ndcdisj 23372 siilem2 30834 normlem7tALT 31101 hhsssh 31251 shintcl 31312 chintcl 31314 spanun 31527 elunop2 31995 lnophm 32001 nmbdfnlb 32032 hmopidmch 32135 hmopidmpj 32136 chirred 32377 limsucncmp 36511 elimhyps 39081 elimhyps2 39084 |
| Copyright terms: Public domain | W3C validator |