| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version | ||
| Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4550. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
| elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
| elimhyp.3 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| elimhyp | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4497 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
| 6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
| 7 | iffalse 4500 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 8 | 7 | eqcomd 2736 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
| 11 | 6, 10 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
| 12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: elimel 4561 elimf 6690 oeoa 8564 oeoe 8566 limensuc 9124 axcc4dom 10401 elimne0 11171 elimgt0 12027 elimge0 12028 2ndcdisj 23350 siilem2 30788 normlem7tALT 31055 hhsssh 31205 shintcl 31266 chintcl 31268 spanun 31481 elunop2 31949 lnophm 31955 nmbdfnlb 31986 hmopidmch 32089 hmopidmpj 32090 chirred 32331 limsucncmp 36441 elimhyps 38961 elimhyps2 38964 |
| Copyright terms: Public domain | W3C validator |