![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4589. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
elimhyp.3 | ⊢ 𝜒 |
Ref | Expression |
---|---|
elimhyp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4537 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
5 | 4 | ibi 267 | . 2 ⊢ (𝜑 → 𝜓) |
6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
7 | iffalse 4540 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2741 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
11 | 6, 10 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: elimel 4600 elimf 6736 oeoa 8634 oeoe 8636 limensuc 9193 axcc4dom 10479 elimne0 11249 elimgt0 12103 elimge0 12104 2ndcdisj 23480 siilem2 30881 normlem7tALT 31148 hhsssh 31298 shintcl 31359 chintcl 31361 spanun 31574 elunop2 32042 lnophm 32048 nmbdfnlb 32079 hmopidmch 32182 hmopidmpj 32183 chirred 32424 limsucncmp 36429 elimhyps 38943 elimhyps2 38946 |
Copyright terms: Public domain | W3C validator |