Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4497. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
elimhyp.3 | ⊢ 𝜒 |
Ref | Expression |
---|---|
elimhyp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4445 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
5 | 4 | ibi 270 | . 2 ⊢ (𝜑 → 𝜓) |
6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
7 | iffalse 4448 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2743 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
11 | 6, 10 | mpbii 236 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
12 | 5, 11 | pm2.61i 185 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ifcif 4439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4440 |
This theorem is referenced by: elimel 4508 elimf 6544 oeoa 8325 oeoe 8327 limensuc 8823 axcc4dom 10055 elimne0 10823 elimgt0 11670 elimge0 11671 2ndcdisj 22353 siilem2 28933 normlem7tALT 29200 hhsssh 29350 shintcl 29411 chintcl 29413 spanun 29626 elunop2 30094 lnophm 30100 nmbdfnlb 30131 hmopidmch 30234 hmopidmpj 30235 chirred 30476 limsucncmp 34372 elimhyps 36712 elimhyps2 36715 |
Copyright terms: Public domain | W3C validator |