MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp Structured version   Visualization version   GIF version

Theorem elimhyp 4544
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4537. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
elimhyp.2 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
elimhyp.3 𝜒
Assertion
Ref Expression
elimhyp 𝜓

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 4484 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21eqcomd 2735 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
3 elimhyp.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
42, 3syl 17 . . 3 (𝜑 → (𝜑𝜓))
54ibi 267 . 2 (𝜑𝜓)
6 elimhyp.3 . . 3 𝜒
7 iffalse 4487 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
87eqcomd 2735 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
9 elimhyp.2 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
108, 9syl 17 . . 3 𝜑 → (𝜒𝜓))
116, 10mpbii 233 . 2 𝜑𝜓)
125, 11pm2.61i 182 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  ifcif 4478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-if 4479
This theorem is referenced by:  elimel  4548  elimf  6655  oeoa  8522  oeoe  8524  limensuc  9078  axcc4dom  10354  elimne0  11124  elimgt0  11980  elimge0  11981  2ndcdisj  23359  siilem2  30814  normlem7tALT  31081  hhsssh  31231  shintcl  31292  chintcl  31294  spanun  31507  elunop2  31975  lnophm  31981  nmbdfnlb  32012  hmopidmch  32115  hmopidmpj  32116  chirred  32357  limsucncmp  36419  elimhyps  38939  elimhyps2  38942
  Copyright terms: Public domain W3C validator