Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimhyp | Structured version Visualization version GIF version |
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4514. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimhyp.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) |
elimhyp.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) |
elimhyp.3 | ⊢ 𝜒 |
Ref | Expression |
---|---|
elimhyp | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4462 | . . . . 5 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
3 | elimhyp.1 | . . . 4 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
5 | 4 | ibi 266 | . 2 ⊢ (𝜑 → 𝜓) |
6 | elimhyp.3 | . . 3 ⊢ 𝜒 | |
7 | iffalse 4465 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
8 | 7 | eqcomd 2744 | . . . 4 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
9 | elimhyp.2 | . . . 4 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜓)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜓)) |
11 | 6, 10 | mpbii 232 | . 2 ⊢ (¬ 𝜑 → 𝜓) |
12 | 5, 11 | pm2.61i 182 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: elimel 4525 elimf 6583 oeoa 8390 oeoe 8392 limensuc 8890 axcc4dom 10128 elimne0 10896 elimgt0 11743 elimge0 11744 2ndcdisj 22515 siilem2 29115 normlem7tALT 29382 hhsssh 29532 shintcl 29593 chintcl 29595 spanun 29808 elunop2 30276 lnophm 30282 nmbdfnlb 30313 hmopidmch 30416 hmopidmpj 30417 chirred 30658 limsucncmp 34562 elimhyps 36902 elimhyps2 36905 |
Copyright terms: Public domain | W3C validator |