| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab2w | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction. This is to elrab2 3670 what elab2gw 3653 is to elab2g 3655. (Contributed by SN, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| elrab2w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| elrab2w.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
| elrab2w.3 | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elrab2w | ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3476 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3476 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → 𝐴 ∈ V) |
| 4 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 5 | elrab2w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 7 | eleq1 2817 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 8 | elrab2w.2 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜓) ↔ (𝐴 ∈ 𝐵 ∧ 𝜒))) |
| 10 | elrab2w.3 | . . . 4 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 11 | df-rab 3412 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 12 | 10, 11 | eqtri 2753 | . . 3 ⊢ 𝐶 = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 13 | 6, 9, 12 | elab2gw 3653 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒))) |
| 14 | 1, 3, 13 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3411 Vcvv 3455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 |
| This theorem is referenced by: uspgrlimlem2 47943 |
| Copyright terms: Public domain | W3C validator |