| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab2w | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction. This is to elrab2 3678 what elab2gw 3661 is to elab2g 3663. (Contributed by SN, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| elrab2w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| elrab2w.2 | ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) |
| elrab2w.3 | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elrab2w | ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3484 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → 𝐴 ∈ V) |
| 4 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 5 | elrab2w.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 7 | eleq1 2821 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 8 | elrab2w.2 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜓) ↔ (𝐴 ∈ 𝐵 ∧ 𝜒))) |
| 10 | elrab2w.3 | . . . 4 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 11 | df-rab 3420 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 12 | 10, 11 | eqtri 2757 | . . 3 ⊢ 𝐶 = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 13 | 6, 9, 12 | elab2gw 3661 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒))) |
| 14 | 1, 3, 13 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3419 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 |
| This theorem is referenced by: uspgrlimlem2 47890 |
| Copyright terms: Public domain | W3C validator |