Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 379 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: clelab 2881 elrabf 3633 elrab 3637 sbccow 3753 sbcco 3756 sbc5ALT 3759 sbcan 3782 sbcor 3783 sbcal 3794 sbcex2 3795 sbcel1v 3801 sbcreu 3823 eldif 3911 elin 3917 elun 4099 sbccsb2 4385 2reu4 4475 elpr2OLD 4603 eluni 4859 eliun 4949 sbcbr123 5150 elopab 5475 opelopabsb 5478 opeliunxp2 5784 inisegn0 6040 brfvopabrbr 6932 elpwun 7685 elxp5 7842 opeliunxp2f 8100 tpostpos 8136 ecdmn0 8620 brecop2 8675 elixpsn 8800 bren 8818 brenOLD 8819 0sdom1dom 9107 elharval 9422 brttrcl 9574 sdom2en01 10163 isfin1-2 10246 wdomac 10388 elwina 10547 elina 10548 lterpq 10831 ltrnq 10840 elnp 10848 elnpi 10849 ltresr 11001 eluz2 12693 dfle2 12986 dflt2 12987 rexanuz2 15160 even2n 16150 isstruct2 16947 xpsfrnel2 17372 ismre 17396 isacs 17457 brssc 17623 isfunc 17676 oduclatb 18322 isipodrs 18352 issubg 18851 isnsg 18879 oppgsubm 19065 oppgsubg 19066 isslw 19309 efgrelexlema 19450 dvdsr 19982 isunit 19993 isirred 20035 isrim0 20063 issubrg 20128 opprsubrg 20149 islss 20301 islbs4 21144 istopon 22166 basdif0 22208 dis2ndc 22716 elmptrab 23083 isusp 23518 ismet2 23591 isphtpc 24262 elpi1 24313 iscmet 24553 bcthlem1 24593 elno 26899 wlkcpr 28284 isvcOLD 29228 isnv 29261 hlimi 29837 h1de2ci 30205 elunop 30521 ispcmp 32103 elmpps 33832 eldm3 34017 opelco3 34032 elima4 34033 brsset 34328 brbigcup 34337 elfix2 34343 elsingles 34357 imageval 34369 funpartlem 34381 elaltxp 34414 ellines 34591 isfne4 34666 bj-ismoore 35430 bj-idreseqb 35488 istotbnd 36083 isbnd 36094 isdrngo1 36270 elrab2w 40475 isnacs 40839 sbccomieg 40928 elmnc 41275 ismea 44378 |
Copyright terms: Public domain | W3C validator |