| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2873 elrabf 3655 elrab 3659 elrab2w 3663 sbccow 3776 sbcco 3779 sbc5ALT 3782 sbcan 3803 sbcor 3804 sbcal 3813 sbcex2 3814 sbcel1v 3819 sbcreu 3839 eldif 3924 elin 3930 elun 4116 sbccsb2 4400 2reu4 4486 eluni 4874 eliun 4959 sbcbr123 5161 elopab 5487 opelopabsb 5490 opeliunxp2 5802 inisegn0 6069 brfvopabrbr 6965 elpwun 7745 elxp5 7899 opeliunxp2f 8189 tpostpos 8225 ecdmn0 8723 brecop2 8784 elixpsn 8910 bren 8928 0sdom1dom 9185 elharval 9514 brttrcl 9666 sdom2en01 10255 isfin1-2 10338 wdomac 10480 elwina 10639 elina 10640 lterpq 10923 ltrnq 10932 elnp 10940 elnpi 10941 ltresr 11093 eluz2 12799 dfle2 13107 dflt2 13108 rexanuz2 15316 even2n 16312 isstruct2 17119 xpsfrnel2 17527 ismre 17551 isacs 17612 brssc 17776 isfunc 17826 oduclatb 18466 isipodrs 18496 issubg 19058 isnsg 19087 oppgsubm 19294 oppgsubg 19295 isslw 19538 efgrelexlema 19679 dvdsr 20271 isunit 20282 isirred 20328 isrim0 20392 issubrng 20456 opprsubrng 20468 issubrg 20480 opprsubrg 20502 islss 20840 islbs4 21741 istopon 22799 basdif0 22840 dis2ndc 23347 elmptrab 23714 isusp 24149 ismet2 24221 isphtpc 24893 elpi1 24945 iscmet 25184 bcthlem1 25224 elno 27557 elnoOLD 27558 elzs12 28337 wlkcpr 29557 isvcOLD 30508 isnv 30541 hlimi 31117 h1de2ci 31485 elunop 31801 ispcmp 33847 elmpps 35560 eldm3 35748 opelco3 35762 elima4 35763 brsset 35877 brbigcup 35886 elfix2 35892 elsingles 35906 imageval 35918 funpartlem 35930 elaltxp 35963 ellines 36140 isfne4 36328 bj-ismoore 37093 bj-idreseqb 37151 istotbnd 37763 isbnd 37774 isdrngo1 37950 isnacs 42692 sbccomieg 42781 elmnc 43125 ismea 46449 isinv2 49015 oppcinito 49224 oppctermo 49225 oppczeroo 49226 catcsect 49387 lmdfval2 49644 cmdfval2 49645 initocmd 49658 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |