![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 379 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: clelab 2880 elrabf 3680 elrab 3684 sbccow 3801 sbcco 3804 sbc5ALT 3807 sbcan 3830 sbcor 3831 sbcal 3842 sbcex2 3843 sbcel1v 3849 sbcreu 3871 eldif 3959 elin 3965 elun 4149 sbccsb2 4435 2reu4 4527 elpr2OLD 4655 eluni 4912 eliun 5002 sbcbr123 5203 elopab 5528 opelopabsb 5531 opeliunxp2 5839 inisegn0 6098 brfvopabrbr 6996 elpwun 7756 elxp5 7914 opeliunxp2f 8195 tpostpos 8231 ecdmn0 8750 brecop2 8805 elixpsn 8931 bren 8949 brenOLD 8950 0sdom1dom 9238 elharval 9556 brttrcl 9708 sdom2en01 10297 isfin1-2 10380 wdomac 10522 elwina 10681 elina 10682 lterpq 10965 ltrnq 10974 elnp 10982 elnpi 10983 ltresr 11135 eluz2 12828 dfle2 13126 dflt2 13127 rexanuz2 15296 even2n 16285 isstruct2 17082 xpsfrnel2 17510 ismre 17534 isacs 17595 brssc 17761 isfunc 17814 oduclatb 18460 isipodrs 18490 issubg 19006 isnsg 19035 oppgsubm 19229 oppgsubg 19230 isslw 19476 efgrelexlema 19617 dvdsr 20176 isunit 20187 isirred 20233 isrim0 20261 issubrg 20319 opprsubrg 20340 islss 20545 islbs4 21387 istopon 22414 basdif0 22456 dis2ndc 22964 elmptrab 23331 isusp 23766 ismet2 23839 isphtpc 24510 elpi1 24561 iscmet 24801 bcthlem1 24841 elno 27149 wlkcpr 28886 isvcOLD 29832 isnv 29865 hlimi 30441 h1de2ci 30809 elunop 31125 ispcmp 32837 elmpps 34564 eldm3 34731 opelco3 34746 elima4 34747 brsset 34861 brbigcup 34870 elfix2 34876 elsingles 34890 imageval 34902 funpartlem 34914 elaltxp 34947 ellines 35124 isfne4 35225 bj-ismoore 35986 bj-idreseqb 36044 istotbnd 36637 isbnd 36648 isdrngo1 36824 elrab2w 41410 isnacs 41442 sbccomieg 41531 elmnc 41878 ismea 45167 issubrng 46726 opprsubrng 46738 |
Copyright terms: Public domain | W3C validator |