| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2877 elrabf 3640 elrab 3643 elrab2w 3647 sbccow 3760 sbcco 3763 sbc5ALT 3766 sbcan 3787 sbcor 3788 sbcal 3797 sbcex2 3798 sbcel1v 3803 sbcreu 3823 eldif 3908 elin 3914 elun 4102 sbccsb2 4386 2reu4 4474 eluni 4863 eliun 4947 sbcbr123 5149 elopab 5472 opelopabsb 5475 opeliunxp2 5784 inisegn0 6053 brfvopabrbr 6934 elpwun 7710 elxp5 7861 opeliunxp2f 8148 tpostpos 8184 ecdmn0 8682 brecop2 8743 elixpsn 8869 bren 8887 0sdom1dom 9139 elharval 9456 brttrcl 9612 sdom2en01 10202 isfin1-2 10285 wdomac 10427 elwina 10586 elina 10587 lterpq 10870 ltrnq 10879 elnp 10887 elnpi 10888 ltresr 11040 eluz2 12746 dfle2 13050 dflt2 13051 rexanuz2 15261 even2n 16257 isstruct2 17064 xpsfrnel2 17472 ismre 17496 isacs 17561 brssc 17725 isfunc 17775 oduclatb 18417 isipodrs 18447 issubg 19043 isnsg 19071 oppgsubm 19278 oppgsubg 19279 isslw 19524 efgrelexlema 19665 dvdsr 20284 isunit 20295 isirred 20341 isrim0 20404 issubrng 20466 opprsubrng 20478 issubrg 20490 opprsubrg 20512 islss 20871 islbs4 21773 istopon 22830 basdif0 22871 dis2ndc 23378 elmptrab 23745 isusp 24179 ismet2 24251 isphtpc 24923 elpi1 24975 iscmet 25214 bcthlem1 25254 elno 27587 elnoOLD 27588 elzs12 28386 wlkcpr 29611 isvcOLD 30563 isnv 30596 hlimi 31172 h1de2ci 31540 elunop 31856 ispcmp 33893 elmpps 35640 eldm3 35828 opelco3 35842 elima4 35843 brsset 35954 brbigcup 35963 elfix2 35969 elsingles 35983 imageval 35995 funpartlem 36009 elaltxp 36042 ellines 36219 isfne4 36407 bj-ismoore 37172 bj-idreseqb 37230 istotbnd 37832 isbnd 37843 isdrngo1 38019 isnacs 42824 sbccomieg 42913 elmnc 43256 ismea 46576 isinv2 49154 oppcinito 49363 oppctermo 49364 oppczeroo 49365 catcsect 49526 lmdfval2 49783 cmdfval2 49784 initocmd 49797 termolmd 49798 |
| Copyright terms: Public domain | W3C validator |