| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2876 elrabf 3644 elrab 3647 elrab2w 3651 sbccow 3764 sbcco 3767 sbc5ALT 3770 sbcan 3791 sbcor 3792 sbcal 3801 sbcex2 3802 sbcel1v 3807 sbcreu 3827 eldif 3912 elin 3918 elun 4103 sbccsb2 4387 2reu4 4473 eluni 4862 eliun 4945 sbcbr123 5145 elopab 5467 opelopabsb 5470 opeliunxp2 5778 inisegn0 6047 brfvopabrbr 6926 elpwun 7702 elxp5 7853 opeliunxp2f 8140 tpostpos 8176 ecdmn0 8674 brecop2 8735 elixpsn 8861 bren 8879 0sdom1dom 9130 elharval 9447 brttrcl 9603 sdom2en01 10193 isfin1-2 10276 wdomac 10418 elwina 10577 elina 10578 lterpq 10861 ltrnq 10870 elnp 10878 elnpi 10879 ltresr 11031 eluz2 12738 dfle2 13046 dflt2 13047 rexanuz2 15257 even2n 16253 isstruct2 17060 xpsfrnel2 17468 ismre 17492 isacs 17557 brssc 17721 isfunc 17771 oduclatb 18413 isipodrs 18443 issubg 19039 isnsg 19068 oppgsubm 19275 oppgsubg 19276 isslw 19521 efgrelexlema 19662 dvdsr 20281 isunit 20292 isirred 20338 isrim0 20401 issubrng 20463 opprsubrng 20475 issubrg 20487 opprsubrg 20509 islss 20868 islbs4 21770 istopon 22828 basdif0 22869 dis2ndc 23376 elmptrab 23743 isusp 24177 ismet2 24249 isphtpc 24921 elpi1 24973 iscmet 25212 bcthlem1 25252 elno 27585 elnoOLD 27586 elzs12 28384 wlkcpr 29608 isvcOLD 30557 isnv 30590 hlimi 31166 h1de2ci 31534 elunop 31850 ispcmp 33868 elmpps 35615 eldm3 35803 opelco3 35817 elima4 35818 brsset 35929 brbigcup 35938 elfix2 35944 elsingles 35958 imageval 35970 funpartlem 35982 elaltxp 36015 ellines 36192 isfne4 36380 bj-ismoore 37145 bj-idreseqb 37203 istotbnd 37815 isbnd 37826 isdrngo1 38002 isnacs 42743 sbccomieg 42832 elmnc 43175 ismea 46495 isinv2 49064 oppcinito 49273 oppctermo 49274 oppczeroo 49275 catcsect 49436 lmdfval2 49693 cmdfval2 49694 initocmd 49707 termolmd 49708 |
| Copyright terms: Public domain | W3C validator |