| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2874 elrabf 3658 elrab 3662 elrab2w 3666 sbccow 3779 sbcco 3782 sbc5ALT 3785 sbcan 3806 sbcor 3807 sbcal 3816 sbcex2 3817 sbcel1v 3822 sbcreu 3842 eldif 3927 elin 3933 elun 4119 sbccsb2 4403 2reu4 4489 eluni 4877 eliun 4962 sbcbr123 5164 elopab 5490 opelopabsb 5493 opeliunxp2 5805 inisegn0 6072 brfvopabrbr 6968 elpwun 7748 elxp5 7902 opeliunxp2f 8192 tpostpos 8228 ecdmn0 8726 brecop2 8787 elixpsn 8913 bren 8931 0sdom1dom 9192 elharval 9521 brttrcl 9673 sdom2en01 10262 isfin1-2 10345 wdomac 10487 elwina 10646 elina 10647 lterpq 10930 ltrnq 10939 elnp 10947 elnpi 10948 ltresr 11100 eluz2 12806 dfle2 13114 dflt2 13115 rexanuz2 15323 even2n 16319 isstruct2 17126 xpsfrnel2 17534 ismre 17558 isacs 17619 brssc 17783 isfunc 17833 oduclatb 18473 isipodrs 18503 issubg 19065 isnsg 19094 oppgsubm 19301 oppgsubg 19302 isslw 19545 efgrelexlema 19686 dvdsr 20278 isunit 20289 isirred 20335 isrim0 20399 issubrng 20463 opprsubrng 20475 issubrg 20487 opprsubrg 20509 islss 20847 islbs4 21748 istopon 22806 basdif0 22847 dis2ndc 23354 elmptrab 23721 isusp 24156 ismet2 24228 isphtpc 24900 elpi1 24952 iscmet 25191 bcthlem1 25231 elno 27564 elnoOLD 27565 elzs12 28344 wlkcpr 29564 isvcOLD 30515 isnv 30548 hlimi 31124 h1de2ci 31492 elunop 31808 ispcmp 33854 elmpps 35567 eldm3 35755 opelco3 35769 elima4 35770 brsset 35884 brbigcup 35893 elfix2 35899 elsingles 35913 imageval 35925 funpartlem 35937 elaltxp 35970 ellines 36147 isfne4 36335 bj-ismoore 37100 bj-idreseqb 37158 istotbnd 37770 isbnd 37781 isdrngo1 37957 isnacs 42699 sbccomieg 42788 elmnc 43132 ismea 46456 isinv2 49019 oppcinito 49228 oppctermo 49229 oppczeroo 49230 catcsect 49391 lmdfval2 49648 cmdfval2 49649 initocmd 49662 termolmd 49663 |
| Copyright terms: Public domain | W3C validator |