![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: clelab 2884 elrabf 3690 elrab 3694 elrab2w 3698 sbccow 3813 sbcco 3816 sbc5ALT 3819 sbcan 3843 sbcor 3844 sbcal 3854 sbcex2 3855 sbcel1v 3861 sbcreu 3884 eldif 3972 elin 3978 elun 4162 sbccsb2 4442 2reu4 4528 eluni 4914 eliun 4999 sbcbr123 5201 elopab 5536 opelopabsb 5539 opeliunxp2 5851 inisegn0 6118 brfvopabrbr 7012 elpwun 7787 elxp5 7945 opeliunxp2f 8233 tpostpos 8269 ecdmn0 8792 brecop2 8849 elixpsn 8975 bren 8993 0sdom1dom 9271 elharval 9598 brttrcl 9750 sdom2en01 10339 isfin1-2 10422 wdomac 10564 elwina 10723 elina 10724 lterpq 11007 ltrnq 11016 elnp 11024 elnpi 11025 ltresr 11177 eluz2 12881 dfle2 13185 dflt2 13186 rexanuz2 15384 even2n 16375 isstruct2 17182 xpsfrnel2 17610 ismre 17634 isacs 17695 brssc 17861 isfunc 17914 oduclatb 18564 isipodrs 18594 issubg 19156 isnsg 19185 oppgsubm 19395 oppgsubg 19396 isslw 19640 efgrelexlema 19781 dvdsr 20378 isunit 20389 isirred 20435 isrim0 20499 issubrng 20563 opprsubrng 20575 issubrg 20587 opprsubrg 20609 islss 20949 islbs4 21869 istopon 22933 basdif0 22975 dis2ndc 23483 elmptrab 23850 isusp 24285 ismet2 24358 isphtpc 25039 elpi1 25091 iscmet 25331 bcthlem1 25371 elno 27704 elnoOLD 27705 elzs12 28435 wlkcpr 29661 isvcOLD 30607 isnv 30640 hlimi 31216 h1de2ci 31584 elunop 31900 ispcmp 33817 elmpps 35557 eldm3 35740 opelco3 35755 elima4 35756 brsset 35870 brbigcup 35879 elfix2 35885 elsingles 35899 imageval 35911 funpartlem 35923 elaltxp 35956 ellines 36133 isfne4 36322 bj-ismoore 37087 bj-idreseqb 37145 istotbnd 37755 isbnd 37766 isdrngo1 37942 isnacs 42691 sbccomieg 42780 elmnc 43124 ismea 46406 |
Copyright terms: Public domain | W3C validator |