Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 378 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: clelab 2882 elrabf 3613 elrab 3617 sbccow 3734 sbcco 3737 sbc5ALT 3740 sbcan 3763 sbcor 3764 sbcal 3776 sbcex2 3777 sbcel1v 3783 sbcreu 3805 eldif 3893 elin 3899 elun 4079 sbccsb2 4365 2reu4 4454 elpr2OLD 4584 eluni 4839 eliun 4925 sbcbr123 5124 elopab 5433 opelopabsb 5436 opeliunxp2 5736 inisegn0 5995 brfvopabrbr 6854 elpwun 7597 elxp5 7744 opeliunxp2f 7997 tpostpos 8033 ecdmn0 8503 brecop2 8558 elixpsn 8683 bren 8701 brenOLD 8702 elharval 9250 sdom2en01 9989 isfin1-2 10072 wdomac 10214 elwina 10373 elina 10374 lterpq 10657 ltrnq 10666 elnp 10674 elnpi 10675 ltresr 10827 eluz2 12517 dfle2 12810 dflt2 12811 rexanuz2 14989 even2n 15979 isstruct2 16778 xpsfrnel2 17192 ismre 17216 isacs 17277 brssc 17443 isfunc 17495 oduclatb 18140 isipodrs 18170 issubg 18670 isnsg 18698 oppgsubm 18884 oppgsubg 18885 isslw 19128 efgrelexlema 19270 dvdsr 19803 isunit 19814 isirred 19856 issubrg 19939 opprsubrg 19960 islss 20111 islbs4 20949 istopon 21969 basdif0 22011 dis2ndc 22519 elmptrab 22886 isusp 23321 ismet2 23394 isphtpc 24063 elpi1 24114 iscmet 24353 bcthlem1 24393 wlkcpr 27898 isvcOLD 28842 isnv 28875 hlimi 29451 h1de2ci 29819 elunop 30135 ispcmp 31709 elmpps 33435 eldm3 33634 opelco3 33655 elima4 33656 brttrcl 33699 elno 33776 brsset 34118 brbigcup 34127 elfix2 34133 elsingles 34147 imageval 34159 funpartlem 34171 elaltxp 34204 ellines 34381 isfne4 34456 bj-ismoore 35203 bj-idreseqb 35261 istotbnd 35854 isbnd 35865 isdrngo1 36041 elrab2w 40095 isnacs 40442 sbccomieg 40531 elmnc 40877 ismea 43879 |
Copyright terms: Public domain | W3C validator |