Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 382 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 185 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: clelab 2880 elrabf 3598 elrab 3602 sbccow 3717 sbcco 3720 sbc5ALT 3723 sbcan 3746 sbcor 3747 sbcal 3759 sbcex2 3760 sbcel1v 3766 sbcreu 3788 eldif 3876 elin 3882 elun 4063 sbccsb2 4349 2reu4 4438 elpr2OLD 4567 eluni 4822 eliun 4908 sbcbr123 5107 elopab 5408 opelopabsb 5411 opeliunxp2 5707 inisegn0 5966 brfvopabrbr 6815 elpwun 7554 elxp5 7701 opeliunxp2f 7952 tpostpos 7988 ecdmn0 8438 brecop2 8493 elixpsn 8618 bren 8636 brenOLD 8637 elharval 9177 sdom2en01 9916 isfin1-2 9999 wdomac 10141 elwina 10300 elina 10301 lterpq 10584 ltrnq 10593 elnp 10601 elnpi 10602 ltresr 10754 eluz2 12444 dfle2 12737 dflt2 12738 rexanuz2 14913 even2n 15903 isstruct2 16702 xpsfrnel2 17069 ismre 17093 isacs 17154 brssc 17319 isfunc 17370 oduclatb 18013 isipodrs 18043 issubg 18543 isnsg 18571 oppgsubm 18754 oppgsubg 18755 isslw 18997 efgrelexlema 19139 dvdsr 19664 isunit 19675 isirred 19717 issubrg 19800 opprsubrg 19821 islss 19971 islbs4 20794 istopon 21809 basdif0 21850 dis2ndc 22357 elmptrab 22724 isusp 23159 ismet2 23231 isphtpc 23891 elpi1 23942 iscmet 24181 bcthlem1 24221 wlkcpr 27716 isvcOLD 28660 isnv 28693 hlimi 29269 h1de2ci 29637 elunop 29953 ispcmp 31521 elmpps 33248 eldm3 33447 opelco3 33468 elima4 33469 brttrcl 33512 elno 33586 brsset 33928 brbigcup 33937 elfix2 33943 elsingles 33957 imageval 33969 funpartlem 33981 elaltxp 34014 ellines 34191 isfne4 34266 bj-ismoore 35011 bj-idreseqb 35069 istotbnd 35664 isbnd 35675 isdrngo1 35851 elrab2w 39889 isnacs 40229 sbccomieg 40318 elmnc 40664 ismea 43664 |
Copyright terms: Public domain | W3C validator |