![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: clelab 2890 elrabf 3704 elrab 3708 elrab2w 3712 sbccow 3827 sbcco 3830 sbc5ALT 3833 sbcan 3857 sbcor 3858 sbcal 3868 sbcex2 3869 sbcel1v 3875 sbcreu 3898 eldif 3986 elin 3992 elun 4176 sbccsb2 4460 2reu4 4546 eluni 4934 eliun 5019 sbcbr123 5220 elopab 5546 opelopabsb 5549 opeliunxp2 5863 inisegn0 6128 brfvopabrbr 7026 elpwun 7804 elxp5 7963 opeliunxp2f 8251 tpostpos 8287 ecdmn0 8812 brecop2 8869 elixpsn 8995 bren 9013 brenOLD 9014 0sdom1dom 9301 elharval 9630 brttrcl 9782 sdom2en01 10371 isfin1-2 10454 wdomac 10596 elwina 10755 elina 10756 lterpq 11039 ltrnq 11048 elnp 11056 elnpi 11057 ltresr 11209 eluz2 12909 dfle2 13209 dflt2 13210 rexanuz2 15398 even2n 16390 isstruct2 17196 xpsfrnel2 17624 ismre 17648 isacs 17709 brssc 17875 isfunc 17928 oduclatb 18577 isipodrs 18607 issubg 19166 isnsg 19195 oppgsubm 19405 oppgsubg 19406 isslw 19650 efgrelexlema 19791 dvdsr 20388 isunit 20399 isirred 20445 isrim0 20509 issubrng 20573 opprsubrng 20585 issubrg 20599 opprsubrg 20621 islss 20955 islbs4 21875 istopon 22939 basdif0 22981 dis2ndc 23489 elmptrab 23856 isusp 24291 ismet2 24364 isphtpc 25045 elpi1 25097 iscmet 25337 bcthlem1 25377 elno 27708 elnoOLD 27709 elzs12 28439 wlkcpr 29665 isvcOLD 30611 isnv 30644 hlimi 31220 h1de2ci 31588 elunop 31904 ispcmp 33803 elmpps 35541 eldm3 35723 opelco3 35738 elima4 35739 brsset 35853 brbigcup 35862 elfix2 35868 elsingles 35882 imageval 35894 funpartlem 35906 elaltxp 35939 ellines 36116 isfne4 36306 bj-ismoore 37071 bj-idreseqb 37129 istotbnd 37729 isbnd 37740 isdrngo1 37916 isnacs 42660 sbccomieg 42749 elmnc 43093 ismea 46372 |
Copyright terms: Public domain | W3C validator |