| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2873 elrabf 3646 elrab 3650 elrab2w 3654 sbccow 3767 sbcco 3770 sbc5ALT 3773 sbcan 3794 sbcor 3795 sbcal 3804 sbcex2 3805 sbcel1v 3810 sbcreu 3830 eldif 3915 elin 3921 elun 4106 sbccsb2 4390 2reu4 4476 eluni 4864 eliun 4948 sbcbr123 5149 elopab 5474 opelopabsb 5477 opeliunxp2 5785 inisegn0 6053 brfvopabrbr 6931 elpwun 7709 elxp5 7863 opeliunxp2f 8150 tpostpos 8186 ecdmn0 8684 brecop2 8745 elixpsn 8871 bren 8889 0sdom1dom 9145 elharval 9472 brttrcl 9628 sdom2en01 10215 isfin1-2 10298 wdomac 10440 elwina 10599 elina 10600 lterpq 10883 ltrnq 10892 elnp 10900 elnpi 10901 ltresr 11053 eluz2 12759 dfle2 13067 dflt2 13068 rexanuz2 15275 even2n 16271 isstruct2 17078 xpsfrnel2 17486 ismre 17510 isacs 17575 brssc 17739 isfunc 17789 oduclatb 18431 isipodrs 18461 issubg 19023 isnsg 19052 oppgsubm 19259 oppgsubg 19260 isslw 19505 efgrelexlema 19646 dvdsr 20265 isunit 20276 isirred 20322 isrim0 20386 issubrng 20450 opprsubrng 20462 issubrg 20474 opprsubrg 20496 islss 20855 islbs4 21757 istopon 22815 basdif0 22856 dis2ndc 23363 elmptrab 23730 isusp 24165 ismet2 24237 isphtpc 24909 elpi1 24961 iscmet 25200 bcthlem1 25240 elno 27573 elnoOLD 27574 elzs12 28368 wlkcpr 29592 isvcOLD 30541 isnv 30574 hlimi 31150 h1de2ci 31518 elunop 31834 ispcmp 33826 elmpps 35548 eldm3 35736 opelco3 35750 elima4 35751 brsset 35865 brbigcup 35874 elfix2 35880 elsingles 35894 imageval 35906 funpartlem 35918 elaltxp 35951 ellines 36128 isfne4 36316 bj-ismoore 37081 bj-idreseqb 37139 istotbnd 37751 isbnd 37762 isdrngo1 37938 isnacs 42680 sbccomieg 42769 elmnc 43112 ismea 46436 isinv2 49015 oppcinito 49224 oppctermo 49225 oppczeroo 49226 catcsect 49387 lmdfval2 49644 cmdfval2 49645 initocmd 49658 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |