| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
| pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
| pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
| 2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 4 | 2, 3 | pm5.21ni 377 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: clelab 2880 elrabf 3667 elrab 3671 elrab2w 3675 sbccow 3788 sbcco 3791 sbc5ALT 3794 sbcan 3815 sbcor 3816 sbcal 3825 sbcex2 3826 sbcel1v 3831 sbcreu 3851 eldif 3936 elin 3942 elun 4128 sbccsb2 4412 2reu4 4498 eluni 4886 eliun 4971 sbcbr123 5173 elopab 5502 opelopabsb 5505 opeliunxp2 5818 inisegn0 6085 brfvopabrbr 6983 elpwun 7763 elxp5 7919 opeliunxp2f 8209 tpostpos 8245 ecdmn0 8768 brecop2 8825 elixpsn 8951 bren 8969 0sdom1dom 9246 elharval 9575 brttrcl 9727 sdom2en01 10316 isfin1-2 10399 wdomac 10541 elwina 10700 elina 10701 lterpq 10984 ltrnq 10993 elnp 11001 elnpi 11002 ltresr 11154 eluz2 12858 dfle2 13163 dflt2 13164 rexanuz2 15368 even2n 16361 isstruct2 17168 xpsfrnel2 17578 ismre 17602 isacs 17663 brssc 17827 isfunc 17877 oduclatb 18517 isipodrs 18547 issubg 19109 isnsg 19138 oppgsubm 19345 oppgsubg 19346 isslw 19589 efgrelexlema 19730 dvdsr 20322 isunit 20333 isirred 20379 isrim0 20443 issubrng 20507 opprsubrng 20519 issubrg 20531 opprsubrg 20553 islss 20891 islbs4 21792 istopon 22850 basdif0 22891 dis2ndc 23398 elmptrab 23765 isusp 24200 ismet2 24272 isphtpc 24944 elpi1 24996 iscmet 25236 bcthlem1 25276 elno 27609 elnoOLD 27610 elzs12 28389 wlkcpr 29609 isvcOLD 30560 isnv 30593 hlimi 31169 h1de2ci 31537 elunop 31853 ispcmp 33888 elmpps 35595 eldm3 35778 opelco3 35792 elima4 35793 brsset 35907 brbigcup 35916 elfix2 35922 elsingles 35936 imageval 35948 funpartlem 35960 elaltxp 35993 ellines 36170 isfne4 36358 bj-ismoore 37123 bj-idreseqb 37181 istotbnd 37793 isbnd 37804 isdrngo1 37980 isnacs 42727 sbccomieg 42816 elmnc 43160 ismea 46480 oppcinito 49152 oppctermo 49153 oppczeroo 49154 lmdfval2 49527 cmdfval2 49528 |
| Copyright terms: Public domain | W3C validator |