Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 379 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: clelab 2884 elrabf 3621 elrab 3625 sbccow 3740 sbcco 3743 sbc5ALT 3746 sbcan 3769 sbcor 3770 sbcal 3781 sbcex2 3782 sbcel1v 3788 sbcreu 3810 eldif 3898 elin 3904 elun 4084 sbccsb2 4369 2reu4 4458 elpr2OLD 4588 eluni 4843 eliun 4929 sbcbr123 5129 elopab 5441 opelopabsb 5444 opeliunxp2 5750 inisegn0 6009 brfvopabrbr 6881 elpwun 7628 elxp5 7779 opeliunxp2f 8035 tpostpos 8071 ecdmn0 8554 brecop2 8609 elixpsn 8734 bren 8752 brenOLD 8753 elharval 9329 brttrcl 9480 sdom2en01 10067 isfin1-2 10150 wdomac 10292 elwina 10451 elina 10452 lterpq 10735 ltrnq 10744 elnp 10752 elnpi 10753 ltresr 10905 eluz2 12597 dfle2 12890 dflt2 12891 rexanuz2 15070 even2n 16060 isstruct2 16859 xpsfrnel2 17284 ismre 17308 isacs 17369 brssc 17535 isfunc 17588 oduclatb 18234 isipodrs 18264 issubg 18764 isnsg 18792 oppgsubm 18978 oppgsubg 18979 isslw 19222 efgrelexlema 19364 dvdsr 19897 isunit 19908 isirred 19950 issubrg 20033 opprsubrg 20054 islss 20205 islbs4 21048 istopon 22070 basdif0 22112 dis2ndc 22620 elmptrab 22987 isusp 23422 ismet2 23495 isphtpc 24166 elpi1 24217 iscmet 24457 bcthlem1 24497 wlkcpr 28005 isvcOLD 28950 isnv 28983 hlimi 29559 h1de2ci 29927 elunop 30243 ispcmp 31816 elmpps 33544 eldm3 33737 opelco3 33758 elima4 33759 elno 33858 brsset 34200 brbigcup 34209 elfix2 34215 elsingles 34229 imageval 34241 funpartlem 34253 elaltxp 34286 ellines 34463 isfne4 34538 bj-ismoore 35285 bj-idreseqb 35343 istotbnd 35936 isbnd 35947 isdrngo1 36123 elrab2w 40174 isnacs 40533 sbccomieg 40622 elmnc 40968 ismea 43996 |
Copyright terms: Public domain | W3C validator |