![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nii | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
Ref | Expression |
---|---|
pm5.21ni.1 | ⊢ (𝜑 → 𝜓) |
pm5.21ni.2 | ⊢ (𝜒 → 𝜓) |
pm5.21nii.3 | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nii | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nii.3 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) | |
2 | pm5.21ni.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | pm5.21ni.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
4 | 2, 3 | pm5.21ni 376 | . 2 ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: clelab 2877 elrabf 3678 elrab 3682 sbccow 3799 sbcco 3802 sbc5ALT 3805 sbcan 3828 sbcor 3829 sbcal 3840 sbcex2 3841 sbcel1v 3847 sbcreu 3869 eldif 3957 elin 3963 elun 4147 sbccsb2 4433 2reu4 4525 elpr2OLD 4653 eluni 4910 eliun 5000 sbcbr123 5201 elopab 5526 opelopabsb 5529 opeliunxp2 5837 inisegn0 6096 brfvopabrbr 6994 elpwun 7758 elxp5 7916 opeliunxp2f 8197 tpostpos 8233 ecdmn0 8752 brecop2 8807 elixpsn 8933 bren 8951 brenOLD 8952 0sdom1dom 9240 elharval 9558 brttrcl 9710 sdom2en01 10299 isfin1-2 10382 wdomac 10524 elwina 10683 elina 10684 lterpq 10967 ltrnq 10976 elnp 10984 elnpi 10985 ltresr 11137 eluz2 12832 dfle2 13130 dflt2 13131 rexanuz2 15300 even2n 16289 isstruct2 17086 xpsfrnel2 17514 ismre 17538 isacs 17599 brssc 17765 isfunc 17818 oduclatb 18464 isipodrs 18494 issubg 19042 isnsg 19071 oppgsubm 19270 oppgsubg 19271 isslw 19517 efgrelexlema 19658 dvdsr 20253 isunit 20264 isirred 20310 isrim0 20374 issubrng 20435 opprsubrng 20447 issubrg 20461 opprsubrg 20483 islss 20689 islbs4 21606 istopon 22634 basdif0 22676 dis2ndc 23184 elmptrab 23551 isusp 23986 ismet2 24059 isphtpc 24740 elpi1 24792 iscmet 25032 bcthlem1 25072 elno 27385 wlkcpr 29153 isvcOLD 30099 isnv 30132 hlimi 30708 h1de2ci 31076 elunop 31392 ispcmp 33135 elmpps 34862 eldm3 35035 opelco3 35050 elima4 35051 brsset 35165 brbigcup 35174 elfix2 35180 elsingles 35194 imageval 35206 funpartlem 35218 elaltxp 35251 ellines 35428 isfne4 35528 bj-ismoore 36289 bj-idreseqb 36347 istotbnd 36940 isbnd 36951 isdrngo1 37127 elrab2w 41712 isnacs 41744 sbccomieg 41833 elmnc 42180 ismea 45465 |
Copyright terms: Public domain | W3C validator |