| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3634 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elab2 3640 elab4g 3641 elrab 3650 eldif 3915 elin 3921 elun 4106 elpwg 4556 elsng 4593 elprg 4602 eluni 4864 elint 4905 elintg 4907 eliun 4948 eliin 4949 elopabw 5473 elxpi 5645 elrn2g 5837 eldmg 5845 dmopabelb 5863 elrnmpt 5904 elrnmpt1 5906 elimag 6019 elong 6319 elrnmpog 7488 elrnmpores 7491 eloprabi 8005 orderseqlem 8097 frrlem13 8238 tfrlem12 8318 elqsg 8698 fsetfocdm 8795 elixp2 8835 isacn 9957 isfin1a 10205 isfin2 10207 isfin4 10210 isfin7 10214 isfin3ds 10242 elwina 10599 elina 10600 iswun 10617 eltskg 10663 elgrug 10705 elnp 10900 elnpi 10901 iscat 17596 isps 18492 isdir 18522 ismgm 18533 elefmndbas2 18766 elsymgbas2 19270 mdetunilem9 22523 istopg 22798 isbasisg 22850 isptfin 23419 isufl 23816 isusp 24165 2sqlem9 27354 elno 27573 elnoOLD 27574 elzs12 28368 isuhgr 29023 isushgr 29024 isupgr 29047 isumgr 29058 isuspgr 29115 isusgr 29116 cplgruvtxb 29376 isconngr 30151 isconngr1 30152 isplig 30438 isgrpo 30459 elunop 31834 adjeu 31851 isarchi 33134 ispcmp 33823 eulerpartlemelr 34324 eulerpartlemgs2 34347 ballotlemfmpn 34462 isacycgr 35117 isacycgr1 35118 ismfs 35521 dfon2lem3 35758 elaltxp 35948 bj-ismoore 37078 heiborlem1 37790 heiborlem10 37799 isass 37825 isexid 37826 ismgmOLD 37829 elghomlem2OLD 37865 elcoeleqvrels 38571 eleldisjs 38705 gneispace2 44105 ismnu 44234 nzss 44290 elrnmptf 45159 issal 46296 ismea 46433 isome 46476 ismgmALT 48195 eloprab1st2nd 48840 setrec1lem1 49660 |
| Copyright terms: Public domain | W3C validator |