![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elabg 3665 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 2, 4 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: elab2 3671 elab4g 3672 elrab 3682 eldif 3957 elin 3963 elun 4147 elpwg 4604 elsng 4641 elprg 4648 eluni 4910 elint 4955 elintg 4957 eliun 5000 eliin 5001 elopabw 5525 elxpi 5697 elrn2g 5889 eldmg 5897 dmopabelb 5915 elrnmpt 5954 elrnmpt1 5956 elimag 6062 elong 6371 elrnmpog 7546 elrnmpores 7548 eloprabi 8051 orderseqlem 8145 frrlem13 8285 tfrlem12 8391 elqsg 8764 fsetfocdm 8857 elixp2 8897 isacn 10041 isfin1a 10289 isfin2 10291 isfin4 10294 isfin7 10298 isfin3ds 10326 elwina 10683 elina 10684 iswun 10701 eltskg 10747 elgrug 10789 elnp 10984 elnpi 10985 iscat 17620 isps 18525 isdir 18555 ismgm 18566 elefmndbas2 18791 elsymgbas2 19281 mdetunilem9 22342 istopg 22617 isbasisg 22670 isptfin 23240 isufl 23637 isusp 23986 2sqlem9 27166 elno 27385 isuhgr 28587 isushgr 28588 isupgr 28611 isumgr 28622 isuspgr 28679 isusgr 28680 cplgruvtxb 28937 isconngr 29709 isconngr1 29710 isplig 29996 isgrpo 30017 elunop 31392 adjeu 31409 isarchi 32598 ispcmp 33135 eulerpartlemelr 33654 eulerpartlemgs2 33677 ballotlemfmpn 33791 isacycgr 34434 isacycgr1 34435 ismfs 34838 dfon2lem3 35061 elaltxp 35251 bj-ismoore 36289 heiborlem1 36982 heiborlem10 36991 isass 37017 isexid 37018 ismgmOLD 37021 elghomlem2OLD 37057 elcoeleqvrels 37768 eleldisjs 37901 gneispace2 43185 ismnu 43322 nzss 43378 elrnmptf 44178 issal 45328 ismea 45465 isome 45508 ismgmALT 46899 setrec1lem1 47819 |
Copyright terms: Public domain | W3C validator |