| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3630 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elab2 3636 elab4g 3637 elrab 3645 eldif 3910 elin 3916 elun 4101 elpwg 4551 elsng 4588 elprg 4597 eluni 4860 elint 4901 elintg 4903 eliun 4943 eliin 4944 elopabw 5464 elxpi 5636 elrn2g 5828 eldmg 5836 dmopabelb 5854 elrnmpt 5895 elrnmpt1 5897 elimag 6010 elong 6310 elrnmpog 7476 elrnmpores 7479 eloprabi 7990 orderseqlem 8082 frrlem13 8223 tfrlem12 8303 elqsg 8683 fsetfocdm 8780 elixp2 8820 isacn 9927 isfin1a 10175 isfin2 10177 isfin4 10180 isfin7 10184 isfin3ds 10212 elwina 10569 elina 10570 iswun 10587 eltskg 10633 elgrug 10675 elnp 10870 elnpi 10871 iscat 17570 isps 18466 isdir 18496 ismgm 18541 elefmndbas2 18774 elsymgbas2 19278 mdetunilem9 22528 istopg 22803 isbasisg 22855 isptfin 23424 isufl 23821 isusp 24169 2sqlem9 27358 elno 27577 elnoOLD 27578 elzs12 28376 isuhgr 29031 isushgr 29032 isupgr 29055 isumgr 29066 isuspgr 29123 isusgr 29124 cplgruvtxb 29384 isconngr 30159 isconngr1 30160 isplig 30446 isgrpo 30467 elunop 31842 adjeu 31859 isarchi 33141 ispcmp 33860 eulerpartlemelr 34360 eulerpartlemgs2 34383 ballotlemfmpn 34498 isacycgr 35157 isacycgr1 35158 ismfs 35561 dfon2lem3 35798 elaltxp 35988 bj-ismoore 37118 heiborlem1 37830 heiborlem10 37839 isass 37865 isexid 37866 ismgmOLD 37869 elghomlem2OLD 37905 elcoeleqvrels 38611 eleldisjs 38745 gneispace2 44144 ismnu 44273 nzss 44329 elrnmptf 45197 issal 46331 ismea 46468 isome 46511 ismgmALT 48233 eloprab1st2nd 48878 setrec1lem1 49698 |
| Copyright terms: Public domain | W3C validator |