| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3659 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: elab2 3665 elab4g 3666 elrab 3675 eldif 3941 elin 3947 elun 4133 elpwg 4583 elsng 4620 elprg 4628 eluni 4890 elint 4932 elintg 4934 eliun 4975 eliin 4976 elopabw 5511 elxpi 5687 elrn2g 5881 eldmg 5889 dmopabelb 5907 elrnmpt 5949 elrnmpt1 5951 elimag 6062 elong 6371 elrnmpog 7550 elrnmpores 7553 eloprabi 8070 orderseqlem 8164 frrlem13 8305 tfrlem12 8411 elqsg 8790 fsetfocdm 8883 elixp2 8923 isacn 10066 isfin1a 10314 isfin2 10316 isfin4 10319 isfin7 10323 isfin3ds 10351 elwina 10708 elina 10709 iswun 10726 eltskg 10772 elgrug 10814 elnp 11009 elnpi 11010 iscat 17686 isps 18582 isdir 18612 ismgm 18623 elefmndbas2 18856 elsymgbas2 19358 mdetunilem9 22574 istopg 22849 isbasisg 22901 isptfin 23470 isufl 23867 isusp 24216 2sqlem9 27407 elno 27626 elnoOLD 27627 elzs12 28357 isuhgr 29005 isushgr 29006 isupgr 29029 isumgr 29040 isuspgr 29097 isusgr 29098 cplgruvtxb 29358 isconngr 30136 isconngr1 30137 isplig 30423 isgrpo 30444 elunop 31819 adjeu 31836 isarchi 33128 ispcmp 33815 eulerpartlemelr 34318 eulerpartlemgs2 34341 ballotlemfmpn 34456 isacycgr 35109 isacycgr1 35110 ismfs 35513 dfon2lem3 35745 elaltxp 35935 bj-ismoore 37065 heiborlem1 37777 heiborlem10 37786 isass 37812 isexid 37813 ismgmOLD 37816 elghomlem2OLD 37852 elcoeleqvrels 38555 eleldisjs 38688 gneispace2 44107 ismnu 44237 nzss 44293 elrnmptf 45143 issal 46286 ismea 46423 isome 46466 ismgmALT 48097 setrec1lem1 49214 |
| Copyright terms: Public domain | W3C validator |