| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3655 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: elab2 3661 elab4g 3662 elrab 3671 eldif 3936 elin 3942 elun 4128 elpwg 4578 elsng 4615 elprg 4624 eluni 4886 elint 4928 elintg 4930 eliun 4971 eliin 4972 elopabw 5501 elxpi 5676 elrn2g 5870 eldmg 5878 dmopabelb 5896 elrnmpt 5938 elrnmpt1 5940 elimag 6051 elong 6360 elrnmpog 7540 elrnmpores 7543 eloprabi 8060 orderseqlem 8154 frrlem13 8295 tfrlem12 8401 elqsg 8780 fsetfocdm 8873 elixp2 8913 isacn 10056 isfin1a 10304 isfin2 10306 isfin4 10309 isfin7 10313 isfin3ds 10341 elwina 10698 elina 10699 iswun 10716 eltskg 10762 elgrug 10804 elnp 10999 elnpi 11000 iscat 17682 isps 18576 isdir 18606 ismgm 18617 elefmndbas2 18850 elsymgbas2 19352 mdetunilem9 22556 istopg 22831 isbasisg 22883 isptfin 23452 isufl 23849 isusp 24198 2sqlem9 27388 elno 27607 elnoOLD 27608 elzs12 28338 isuhgr 28985 isushgr 28986 isupgr 29009 isumgr 29020 isuspgr 29077 isusgr 29078 cplgruvtxb 29338 isconngr 30116 isconngr1 30117 isplig 30403 isgrpo 30424 elunop 31799 adjeu 31816 isarchi 33126 ispcmp 33834 eulerpartlemelr 34335 eulerpartlemgs2 34358 ballotlemfmpn 34473 isacycgr 35113 isacycgr1 35114 ismfs 35517 dfon2lem3 35749 elaltxp 35939 bj-ismoore 37069 heiborlem1 37781 heiborlem10 37790 isass 37816 isexid 37817 ismgmOLD 37820 elghomlem2OLD 37856 elcoeleqvrels 38559 eleldisjs 38692 gneispace2 44103 ismnu 44233 nzss 44289 elrnmptf 45153 issal 46291 ismea 46428 isome 46471 ismgmALT 48146 eloprab1st2nd 48791 setrec1lem1 49499 |
| Copyright terms: Public domain | W3C validator |