| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3643 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elab2 3649 elab4g 3650 elrab 3659 eldif 3924 elin 3930 elun 4116 elpwg 4566 elsng 4603 elprg 4612 eluni 4874 elint 4916 elintg 4918 eliun 4959 eliin 4960 elopabw 5486 elxpi 5660 elrn2g 5854 eldmg 5862 dmopabelb 5880 elrnmpt 5922 elrnmpt1 5924 elimag 6035 elong 6340 elrnmpog 7524 elrnmpores 7527 eloprabi 8042 orderseqlem 8136 frrlem13 8277 tfrlem12 8357 elqsg 8737 fsetfocdm 8834 elixp2 8874 isacn 9997 isfin1a 10245 isfin2 10247 isfin4 10250 isfin7 10254 isfin3ds 10282 elwina 10639 elina 10640 iswun 10657 eltskg 10703 elgrug 10745 elnp 10940 elnpi 10941 iscat 17633 isps 18527 isdir 18557 ismgm 18568 elefmndbas2 18801 elsymgbas2 19303 mdetunilem9 22507 istopg 22782 isbasisg 22834 isptfin 23403 isufl 23800 isusp 24149 2sqlem9 27338 elno 27557 elnoOLD 27558 elzs12 28337 isuhgr 28987 isushgr 28988 isupgr 29011 isumgr 29022 isuspgr 29079 isusgr 29080 cplgruvtxb 29340 isconngr 30118 isconngr1 30119 isplig 30405 isgrpo 30426 elunop 31801 adjeu 31818 isarchi 33136 ispcmp 33847 eulerpartlemelr 34348 eulerpartlemgs2 34371 ballotlemfmpn 34486 isacycgr 35132 isacycgr1 35133 ismfs 35536 dfon2lem3 35773 elaltxp 35963 bj-ismoore 37093 heiborlem1 37805 heiborlem10 37814 isass 37840 isexid 37841 ismgmOLD 37844 elghomlem2OLD 37880 elcoeleqvrels 38586 eleldisjs 38720 gneispace2 44121 ismnu 44250 nzss 44306 elrnmptf 45175 issal 46312 ismea 46449 isome 46492 ismgmALT 48211 eloprab1st2nd 48856 setrec1lem1 49676 |
| Copyright terms: Public domain | W3C validator |