![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elabg 3690 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: elab2 3698 elab4g 3699 elrab 3708 eldif 3986 elin 3992 elun 4176 elpwg 4625 elsng 4662 elprg 4670 eluni 4934 elint 4976 elintg 4978 eliun 5019 eliin 5020 elopabw 5545 elxpi 5722 elrn2g 5915 eldmg 5923 dmopabelb 5941 elrnmpt 5981 elrnmpt1 5983 elimag 6093 elong 6403 elrnmpog 7585 elrnmpores 7588 eloprabi 8104 orderseqlem 8198 frrlem13 8339 tfrlem12 8445 elqsg 8826 fsetfocdm 8919 elixp2 8959 isacn 10113 isfin1a 10361 isfin2 10363 isfin4 10366 isfin7 10370 isfin3ds 10398 elwina 10755 elina 10756 iswun 10773 eltskg 10819 elgrug 10861 elnp 11056 elnpi 11057 iscat 17730 isps 18638 isdir 18668 ismgm 18679 elefmndbas2 18909 elsymgbas2 19414 mdetunilem9 22647 istopg 22922 isbasisg 22975 isptfin 23545 isufl 23942 isusp 24291 2sqlem9 27489 elno 27708 elnoOLD 27709 elzs12 28439 isuhgr 29095 isushgr 29096 isupgr 29119 isumgr 29130 isuspgr 29187 isusgr 29188 cplgruvtxb 29448 isconngr 30221 isconngr1 30222 isplig 30508 isgrpo 30529 elunop 31904 adjeu 31921 isarchi 33162 ispcmp 33803 eulerpartlemelr 34322 eulerpartlemgs2 34345 ballotlemfmpn 34459 isacycgr 35113 isacycgr1 35114 ismfs 35517 dfon2lem3 35749 elaltxp 35939 bj-ismoore 37071 heiborlem1 37771 heiborlem10 37780 isass 37806 isexid 37807 ismgmOLD 37810 elghomlem2OLD 37846 elcoeleqvrels 38551 eleldisjs 38684 gneispace2 44094 ismnu 44230 nzss 44286 elrnmptf 45088 issal 46235 ismea 46372 isome 46415 ismgmALT 47946 setrec1lem1 48779 |
Copyright terms: Public domain | W3C validator |