Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2829 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elabg 3626 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 |
This theorem is referenced by: elab2 3632 elab4g 3633 elrab 3643 eldif 3918 elin 3924 elun 4106 elpwg 4561 elsng 4598 elprg 4605 eluni 4866 elint 4911 elintg 4913 eliun 4956 eliin 4957 elopabw 5480 elxpi 5652 elrn2g 5842 eldmg 5850 dmopabelb 5868 elrnmpt 5907 elrnmpt1 5909 elimag 6013 elong 6321 elrnmpog 7483 elrnmpores 7485 eloprabi 7983 orderseqlem 8056 frrlem13 8196 tfrlem12 8302 elqsg 8640 fsetfocdm 8732 elixp2 8772 isacn 9913 isfin1a 10161 isfin2 10163 isfin4 10166 isfin7 10170 isfin3ds 10198 elwina 10555 elina 10556 iswun 10573 eltskg 10619 elgrug 10661 elnp 10856 elnpi 10857 iscat 17486 isps 18391 isdir 18421 ismgm 18432 elefmndbas2 18617 elsymgbas2 19084 mdetunilem9 21882 istopg 22157 isbasisg 22210 isptfin 22780 isufl 23177 isusp 23526 2sqlem9 26688 elno 26907 isuhgr 27788 isushgr 27789 isupgr 27812 isumgr 27823 isuspgr 27880 isusgr 27881 cplgruvtxb 28138 isconngr 28910 isconngr1 28911 isplig 29195 isgrpo 29216 elunop 30591 adjeu 30608 isarchi 31790 ispcmp 32172 eulerpartlemelr 32691 eulerpartlemgs2 32714 ballotlemfmpn 32828 isacycgr 33473 isacycgr1 33474 ismfs 33877 dfon2lem3 34111 elaltxp 34419 bj-ismoore 35435 heiborlem1 36129 heiborlem10 36138 isass 36164 isexid 36165 ismgmOLD 36168 elghomlem2OLD 36204 elcoeleqvrels 36917 eleldisjs 37050 gneispace2 42119 ismnu 42256 nzss 42312 elrnmptf 43101 issal 44247 ismea 44382 isome 44425 ismgmALT 45839 setrec1lem1 46814 |
Copyright terms: Public domain | W3C validator |