| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3646 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: elab2 3652 elab4g 3653 elrab 3662 eldif 3927 elin 3933 elun 4119 elpwg 4569 elsng 4606 elprg 4615 eluni 4877 elint 4919 elintg 4921 eliun 4962 eliin 4963 elopabw 5489 elxpi 5663 elrn2g 5857 eldmg 5865 dmopabelb 5883 elrnmpt 5925 elrnmpt1 5927 elimag 6038 elong 6343 elrnmpog 7527 elrnmpores 7530 eloprabi 8045 orderseqlem 8139 frrlem13 8280 tfrlem12 8360 elqsg 8740 fsetfocdm 8837 elixp2 8877 isacn 10004 isfin1a 10252 isfin2 10254 isfin4 10257 isfin7 10261 isfin3ds 10289 elwina 10646 elina 10647 iswun 10664 eltskg 10710 elgrug 10752 elnp 10947 elnpi 10948 iscat 17640 isps 18534 isdir 18564 ismgm 18575 elefmndbas2 18808 elsymgbas2 19310 mdetunilem9 22514 istopg 22789 isbasisg 22841 isptfin 23410 isufl 23807 isusp 24156 2sqlem9 27345 elno 27564 elnoOLD 27565 elzs12 28344 isuhgr 28994 isushgr 28995 isupgr 29018 isumgr 29029 isuspgr 29086 isusgr 29087 cplgruvtxb 29347 isconngr 30125 isconngr1 30126 isplig 30412 isgrpo 30433 elunop 31808 adjeu 31825 isarchi 33143 ispcmp 33854 eulerpartlemelr 34355 eulerpartlemgs2 34378 ballotlemfmpn 34493 isacycgr 35139 isacycgr1 35140 ismfs 35543 dfon2lem3 35780 elaltxp 35970 bj-ismoore 37100 heiborlem1 37812 heiborlem10 37821 isass 37847 isexid 37848 ismgmOLD 37851 elghomlem2OLD 37887 elcoeleqvrels 38593 eleldisjs 38727 gneispace2 44128 ismnu 44257 nzss 44313 elrnmptf 45182 issal 46319 ismea 46456 isome 46499 ismgmALT 48215 eloprab1st2nd 48860 setrec1lem1 49680 |
| Copyright terms: Public domain | W3C validator |