![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elabg 3676 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 {cab 2711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: elab2 3684 elab4g 3685 elrab 3694 eldif 3972 elin 3978 elun 4162 elpwg 4607 elsng 4644 elprg 4652 eluni 4914 elint 4956 elintg 4958 eliun 4999 eliin 5000 elopabw 5535 elxpi 5710 elrn2g 5903 eldmg 5911 dmopabelb 5929 elrnmpt 5971 elrnmpt1 5973 elimag 6083 elong 6393 elrnmpog 7567 elrnmpores 7570 eloprabi 8086 orderseqlem 8180 frrlem13 8321 tfrlem12 8427 elqsg 8806 fsetfocdm 8899 elixp2 8939 isacn 10081 isfin1a 10329 isfin2 10331 isfin4 10334 isfin7 10338 isfin3ds 10366 elwina 10723 elina 10724 iswun 10741 eltskg 10787 elgrug 10829 elnp 11024 elnpi 11025 iscat 17716 isps 18625 isdir 18655 ismgm 18666 elefmndbas2 18899 elsymgbas2 19404 mdetunilem9 22641 istopg 22916 isbasisg 22969 isptfin 23539 isufl 23936 isusp 24285 2sqlem9 27485 elno 27704 elnoOLD 27705 elzs12 28435 isuhgr 29091 isushgr 29092 isupgr 29115 isumgr 29126 isuspgr 29183 isusgr 29184 cplgruvtxb 29444 isconngr 30217 isconngr1 30218 isplig 30504 isgrpo 30525 elunop 31900 adjeu 31917 isarchi 33171 ispcmp 33817 eulerpartlemelr 34338 eulerpartlemgs2 34361 ballotlemfmpn 34475 isacycgr 35129 isacycgr1 35130 ismfs 35533 dfon2lem3 35766 elaltxp 35956 bj-ismoore 37087 heiborlem1 37797 heiborlem10 37806 isass 37832 isexid 37833 ismgmOLD 37836 elghomlem2OLD 37872 elcoeleqvrels 38576 eleldisjs 38709 gneispace2 44121 ismnu 44256 nzss 44312 elrnmptf 45123 issal 46269 ismea 46406 isome 46449 ismgmALT 48066 setrec1lem1 48917 |
Copyright terms: Public domain | W3C validator |