| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab2g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2g.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 3 | elab2g.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elabg 3629 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 5 | 2, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: elab2 3635 elab4g 3636 elrab 3644 eldif 3909 elin 3915 elun 4104 elpwg 4554 elsng 4591 elprg 4600 eluni 4863 elint 4905 elintg 4907 eliun 4947 eliin 4948 elopabw 5471 elxpi 5643 elrn2g 5837 eldmg 5845 dmopabelb 5863 elrnmpt 5905 elrnmpt1 5907 elimag 6020 elong 6322 elrnmpog 7490 elrnmpores 7493 eloprabi 8004 orderseqlem 8096 frrlem13 8237 tfrlem12 8317 elqsg 8697 fsetfocdm 8794 elixp2 8834 isacn 9945 isfin1a 10193 isfin2 10195 isfin4 10198 isfin7 10202 isfin3ds 10230 elwina 10587 elina 10588 iswun 10605 eltskg 10651 elgrug 10693 elnp 10888 elnpi 10889 iscat 17588 isps 18484 isdir 18514 ismgm 18559 elefmndbas2 18792 elsymgbas2 19295 mdetunilem9 22545 istopg 22820 isbasisg 22872 isptfin 23441 isufl 23838 isusp 24186 2sqlem9 27375 elno 27594 elnoOLD 27595 elzs12 28393 isuhgr 29049 isushgr 29050 isupgr 29073 isumgr 29084 isuspgr 29141 isusgr 29142 cplgruvtxb 29402 isconngr 30180 isconngr1 30181 isplig 30467 isgrpo 30488 elunop 31863 adjeu 31880 isarchi 33162 ispcmp 33881 eulerpartlemelr 34381 eulerpartlemgs2 34404 ballotlemfmpn 34519 isacycgr 35200 isacycgr1 35201 ismfs 35604 dfon2lem3 35838 elaltxp 36030 bj-ismoore 37160 heiborlem1 37861 heiborlem10 37870 isass 37896 isexid 37897 ismgmOLD 37900 elghomlem2OLD 37936 elcoeleqvrels 38701 eleldisjs 38836 gneispace2 44239 ismnu 44368 nzss 44424 elrnmptf 45292 issal 46426 ismea 46563 isome 46606 ismgmALT 48337 eloprab1st2nd 48982 setrec1lem1 49802 |
| Copyright terms: Public domain | W3C validator |