![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: rb-ax1 1750 speimfwALT 1964 cbv1v 2342 cbv1 2410 hblem 2876 hblemg 2877 sbhypf 3556 axrep1 5304 tfinds2 7901 smores 8408 idssen 9057 1sdomOLD 9312 ssttrcl 9784 itunitc1 10489 dominf 10514 dominfac 10642 ssxr 11359 nnwos 12980 pmatcollpw3lem 22810 ppttop 23035 ptclsg 23644 sincosq3sgn 26560 adjbdln 32115 fmptdF 32674 funcnv4mpt 32687 disjdsct 32714 esumpcvgval 34042 esumcvg 34050 measiuns 34181 ballotlemodife 34462 bnj605 34883 bnj594 34888 acycgr0v 35116 prclisacycgr 35119 imagesset 35917 meran1 36377 meran3 36379 bj-modal4e 36681 f1omptsnlem 37302 mptsnunlem 37304 topdifinffinlem 37313 relowlpssretop 37330 poimirlem25 37605 eqbrb 38188 eqelb 38190 symrefref3 38520 dedths 38918 sn-axrep5v 42209 dffltz 42589 mzpincl 42690 lerabdioph 42761 ltrabdioph 42764 nerabdioph 42765 dvdsrabdioph 42766 finona1cl 43415 frege91 43916 frege97 43922 frege98 43923 frege109 43934 sumnnodd 45551 aiotaval 47010 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |