Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rb-ax1 1758 speimfwALT 1971 cbv1v 2336 cbv1 2403 hblem 2871 hblemg 2872 nfcriiOLD 2901 axrep1 5214 tfinds2 7698 smores 8167 idssen 8756 1sdom 8987 ssttrcl 9434 itunitc1 10160 dominf 10185 dominfac 10313 ssxr 11028 nnwos 12637 pmatcollpw3lem 21913 ppttop 22138 ptclsg 22747 sincosq3sgn 25638 adjbdln 30424 fmptdF 30972 funcnv4mpt 30985 disjdsct 31014 esumpcvgval 32025 esumcvg 32033 measiuns 32164 ballotlemodife 32443 bnj605 32866 bnj594 32871 acycgr0v 33089 prclisacycgr 33092 xpord3ind 33779 imagesset 34234 meran1 34579 meran3 34581 bj-modal4e 34876 f1omptsnlem 35486 mptsnunlem 35488 topdifinffinlem 35497 relowlpssretop 35514 poimirlem25 35781 eqelb 36361 symrefref3 36657 dedths 36955 sn-axrep5v 40165 dffltz 40451 mzpincl 40536 lerabdioph 40607 ltrabdioph 40610 nerabdioph 40611 dvdsrabdioph 40612 frege91 41515 frege97 41521 frege98 41522 frege109 41533 sumnnodd 43125 aiotaval 44538 rrx2linest 46040 |
Copyright terms: Public domain | W3C validator |