| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rb-ax1 1752 speimfwALT 1964 cbv1v 2334 cbv1 2400 hblem 2859 hblemg 2860 sbhypf 3510 axrep1 5235 axrep4v 5239 axrep4 5240 tfinds2 7840 smores 8321 idssen 8968 1sdomOLD 9196 ssttrcl 9668 itunitc1 10373 dominf 10398 dominfac 10526 ssxr 11243 nnwos 12874 pmatcollpw3lem 22670 ppttop 22894 ptclsg 23502 sincosq3sgn 26409 adjbdln 32012 fmptdF 32580 funcnv4mpt 32593 disjdsct 32626 esumpcvgval 34068 esumcvg 34076 measiuns 34207 ballotlemodife 34489 bnj605 34897 bnj594 34902 acycgr0v 35135 prclisacycgr 35138 imagesset 35941 meran1 36399 meran3 36401 bj-modal4e 36703 f1omptsnlem 37324 mptsnunlem 37326 topdifinffinlem 37335 relowlpssretop 37352 poimirlem25 37639 eqbrb 38221 eqelb 38223 symrefref3 38555 dedths 38955 sn-axrep5v 42204 dffltz 42622 mzpincl 42722 lerabdioph 42793 ltrabdioph 42796 nerabdioph 42797 dvdsrabdioph 42798 finona1cl 43442 frege91 43943 frege97 43949 frege98 43950 frege109 43961 sumnnodd 45628 limsupvaluz2 45736 aiotaval 47093 rrx2linest 48728 fonex 48852 |
| Copyright terms: Public domain | W3C validator |