![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: rb-ax1 1749 speimfwALT 1962 cbv1v 2337 cbv1 2405 hblem 2871 hblemg 2872 sbhypf 3544 axrep1 5286 axrep4v 5290 axrep4 5291 tfinds2 7885 smores 8391 idssen 9036 1sdomOLD 9283 ssttrcl 9753 itunitc1 10458 dominf 10483 dominfac 10611 ssxr 11328 nnwos 12955 pmatcollpw3lem 22805 ppttop 23030 ptclsg 23639 sincosq3sgn 26557 adjbdln 32112 fmptdF 32673 funcnv4mpt 32686 disjdsct 32718 esumpcvgval 34059 esumcvg 34067 measiuns 34198 ballotlemodife 34479 bnj605 34900 bnj594 34905 acycgr0v 35133 prclisacycgr 35136 imagesset 35935 meran1 36394 meran3 36396 bj-modal4e 36698 f1omptsnlem 37319 mptsnunlem 37321 topdifinffinlem 37330 relowlpssretop 37347 poimirlem25 37632 eqbrb 38214 eqelb 38216 symrefref3 38546 dedths 38944 sn-axrep5v 42234 dffltz 42621 mzpincl 42722 lerabdioph 42793 ltrabdioph 42796 nerabdioph 42797 dvdsrabdioph 42798 finona1cl 43443 frege91 43944 frege97 43950 frege98 43951 frege109 43962 sumnnodd 45586 limsupvaluz2 45694 aiotaval 47045 rrx2linest 48592 |
Copyright terms: Public domain | W3C validator |