Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rb-ax1 1752 speimfwALT 1966 cbv1v 2331 cbv1 2400 hblem 2868 hblemg 2869 nfcriiOLD 2898 axrep1 5219 tfinds2 7742 smores 8214 idssen 8818 1sdomOLD 9070 ssttrcl 9517 itunitc1 10222 dominf 10247 dominfac 10375 ssxr 11090 nnwos 12701 pmatcollpw3lem 21977 ppttop 22202 ptclsg 22811 sincosq3sgn 25702 adjbdln 30490 fmptdF 31038 funcnv4mpt 31051 disjdsct 31080 esumpcvgval 32091 esumcvg 32099 measiuns 32230 ballotlemodife 32509 bnj605 32932 bnj594 32937 acycgr0v 33155 prclisacycgr 33158 xpord3ind 33845 imagesset 34300 meran1 34645 meran3 34647 bj-modal4e 34942 f1omptsnlem 35551 mptsnunlem 35553 topdifinffinlem 35562 relowlpssretop 35579 poimirlem25 35846 eqelb 36426 symrefref3 36720 dedths 37018 sn-axrep5v 40227 dffltz 40508 mzpincl 40593 lerabdioph 40664 ltrabdioph 40667 nerabdioph 40668 dvdsrabdioph 40669 finona1cl 41098 frege91 41600 frege97 41606 frege98 41607 frege109 41618 sumnnodd 43220 aiotaval 44645 rrx2linest 46146 |
Copyright terms: Public domain | W3C validator |