| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rb-ax1 1752 speimfwALT 1964 cbv1v 2334 cbv1 2400 hblem 2859 hblemg 2860 sbhypf 3499 axrep1 5219 axrep4v 5223 axrep4 5224 tfinds2 7797 smores 8275 idssen 8922 ssttrcl 9611 itunitc1 10314 dominf 10339 dominfac 10467 ssxr 11185 nnwos 12816 pmatcollpw3lem 22668 ppttop 22892 ptclsg 23500 sincosq3sgn 26407 adjbdln 32027 fmptdF 32600 funcnv4mpt 32613 disjdsct 32646 esumpcvgval 34051 esumcvg 34059 measiuns 34190 ballotlemodife 34472 bnj605 34880 bnj594 34885 axreg 35068 axregs 35084 acycgr0v 35131 prclisacycgr 35134 imagesset 35937 meran1 36395 meran3 36397 bj-modal4e 36699 f1omptsnlem 37320 mptsnunlem 37322 topdifinffinlem 37331 relowlpssretop 37348 poimirlem25 37635 eqbrb 38217 eqelb 38219 symrefref3 38551 dedths 38951 sn-axrep5v 42199 dffltz 42617 mzpincl 42717 lerabdioph 42788 ltrabdioph 42791 nerabdioph 42792 dvdsrabdioph 42793 finona1cl 43436 frege91 43937 frege97 43943 frege98 43944 frege109 43955 sumnnodd 45621 limsupvaluz2 45729 aiotaval 47089 rrx2linest 48737 fonex 48861 |
| Copyright terms: Public domain | W3C validator |