| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rb-ax1 1753 speimfwALT 1965 cbv1v 2336 cbv1 2402 hblem 2862 hblemg 2863 sbhypf 3498 axrep1 5216 axrep4v 5220 axrep4 5221 tfinds2 7794 smores 8272 idssen 8919 ssttrcl 9605 itunitc1 10311 dominf 10336 dominfac 10464 ssxr 11182 nnwos 12813 chnfibg 18542 pmatcollpw3lem 22698 ppttop 22922 ptclsg 23530 sincosq3sgn 26436 adjbdln 32063 fmptdF 32638 funcnv4mpt 32651 disjdsct 32684 esumpcvgval 34091 esumcvg 34099 measiuns 34230 ballotlemodife 34511 bnj605 34919 bnj594 34924 axreg 35125 axregs 35145 acycgr0v 35192 prclisacycgr 35195 imagesset 35997 meran1 36455 meran3 36457 bj-modal4e 36759 f1omptsnlem 37380 mptsnunlem 37382 topdifinffinlem 37391 relowlpssretop 37408 poimirlem25 37695 eqbrb 38284 eqelb 38286 symrefref3 38670 dedths 39071 sn-axrep5v 42319 dffltz 42737 mzpincl 42837 lerabdioph 42908 ltrabdioph 42911 nerabdioph 42912 dvdsrabdioph 42913 finona1cl 43556 frege91 44057 frege97 44063 frege98 44064 frege109 44075 sumnnodd 45740 limsupvaluz2 45846 aiotaval 47205 rrx2linest 48853 fonex 48977 |
| Copyright terms: Public domain | W3C validator |