![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 210 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: rb-ax1 1716 speimfwALT 1926 cbv1 2336 hblem 2889 nfcrii 2918 axrep1 5046 tfinds2 7392 smores 7791 idssen 8349 1sdom 8514 itunitc1 9638 dominf 9663 dominfac 9791 ssxr 10508 nnwos 12127 pmatcollpw3lem 21110 ppttop 21334 ptclsg 21942 sincosq3sgn 24804 adjbdln 29656 fmptdF 30180 funcnv4mpt 30193 disjdsct 30214 esumpcvgval 31013 esumcvg 31021 measiuns 31153 ballotlemodife 31433 bnj605 31858 bnj594 31863 imagesset 32972 meran1 33316 meran3 33318 bj-modal4e 33595 bj-cbv1v 33613 bj-axrep1 33655 f1omptsnlem 34096 mptsnunlem 34098 topdifinffinlem 34107 relowlpssretop 34124 poimirlem25 34395 eqelb 34983 symrefref3 35282 dedths 35580 sn-axrep5v 38590 dffltz 38716 mzpincl 38764 lerabdioph 38836 ltrabdioph 38839 nerabdioph 38840 dvdsrabdioph 38841 frege91 39701 frege97 39707 frege98 39708 frege109 39719 sumnnodd 41376 aiotaval 42733 rrx2linest 44131 |
Copyright terms: Public domain | W3C validator |