| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rb-ax1 1752 speimfwALT 1964 cbv1v 2334 cbv1 2400 hblem 2859 hblemg 2860 sbhypf 3507 axrep1 5230 axrep4v 5234 axrep4 5235 tfinds2 7820 smores 8298 idssen 8945 1sdomOLD 9172 ssttrcl 9644 itunitc1 10349 dominf 10374 dominfac 10502 ssxr 11219 nnwos 12850 pmatcollpw3lem 22703 ppttop 22927 ptclsg 23535 sincosq3sgn 26442 adjbdln 32062 fmptdF 32630 funcnv4mpt 32643 disjdsct 32676 esumpcvgval 34061 esumcvg 34069 measiuns 34200 ballotlemodife 34482 bnj605 34890 bnj594 34895 acycgr0v 35128 prclisacycgr 35131 imagesset 35934 meran1 36392 meran3 36394 bj-modal4e 36696 f1omptsnlem 37317 mptsnunlem 37319 topdifinffinlem 37328 relowlpssretop 37345 poimirlem25 37632 eqbrb 38214 eqelb 38216 symrefref3 38548 dedths 38948 sn-axrep5v 42197 dffltz 42615 mzpincl 42715 lerabdioph 42786 ltrabdioph 42789 nerabdioph 42790 dvdsrabdioph 42791 finona1cl 43435 frege91 43936 frege97 43942 frege98 43943 frege109 43954 sumnnodd 45621 limsupvaluz2 45729 aiotaval 47089 rrx2linest 48724 fonex 48848 |
| Copyright terms: Public domain | W3C validator |