![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: rb-ax1 1752 speimfwALT 1966 cbv1v 2330 cbv1 2399 hblem 2863 hblemg 2864 nfcriiOLD 2894 sbhypf 3537 axrep1 5285 tfinds2 7855 smores 8354 idssen 8995 1sdomOLD 9251 ssttrcl 9712 itunitc1 10417 dominf 10442 dominfac 10570 ssxr 11287 nnwos 12903 pmatcollpw3lem 22505 ppttop 22730 ptclsg 23339 sincosq3sgn 26246 adjbdln 31603 fmptdF 32148 funcnv4mpt 32161 disjdsct 32191 esumpcvgval 33374 esumcvg 33382 measiuns 33513 ballotlemodife 33794 bnj605 34216 bnj594 34221 acycgr0v 34437 prclisacycgr 34440 imagesset 35229 meran1 35599 meran3 35601 bj-modal4e 35896 f1omptsnlem 36520 mptsnunlem 36522 topdifinffinlem 36531 relowlpssretop 36548 poimirlem25 36816 eqbrb 37402 eqelb 37404 symrefref3 37737 dedths 38135 sn-axrep5v 41339 dffltz 41678 mzpincl 41774 lerabdioph 41845 ltrabdioph 41848 nerabdioph 41849 dvdsrabdioph 41850 finona1cl 42506 frege91 43007 frege97 43013 frege98 43014 frege109 43025 sumnnodd 44644 aiotaval 46101 rrx2linest 47515 |
Copyright terms: Public domain | W3C validator |