| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3i | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
| Ref | Expression |
|---|---|
| 3imtr3.1 | ⊢ (𝜑 → 𝜓) |
| 3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3imtr3i | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | sylib 218 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: rb-ax1 1752 speimfwALT 1964 cbv1v 2338 cbv1 2407 hblem 2867 hblemg 2868 sbhypf 3528 axrep1 5255 axrep4v 5259 axrep4 5260 tfinds2 7864 smores 8371 idssen 9016 1sdomOLD 9262 ssttrcl 9734 itunitc1 10439 dominf 10464 dominfac 10592 ssxr 11309 nnwos 12936 pmatcollpw3lem 22726 ppttop 22950 ptclsg 23558 sincosq3sgn 26466 adjbdln 32069 fmptdF 32639 funcnv4mpt 32652 disjdsct 32685 esumpcvgval 34114 esumcvg 34122 measiuns 34253 ballotlemodife 34535 bnj605 34943 bnj594 34948 acycgr0v 35175 prclisacycgr 35178 imagesset 35976 meran1 36434 meran3 36436 bj-modal4e 36738 f1omptsnlem 37359 mptsnunlem 37361 topdifinffinlem 37370 relowlpssretop 37387 poimirlem25 37674 eqbrb 38256 eqelb 38258 symrefref3 38587 dedths 38985 sn-axrep5v 42234 dffltz 42632 mzpincl 42732 lerabdioph 42803 ltrabdioph 42806 nerabdioph 42807 dvdsrabdioph 42808 finona1cl 43452 frege91 43953 frege97 43959 frege98 43960 frege109 43971 sumnnodd 45639 limsupvaluz2 45747 aiotaval 47104 rrx2linest 48702 fonex 48822 |
| Copyright terms: Public domain | W3C validator |