Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressnALTV | Structured version Visualization version GIF version |
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.) |
Ref | Expression |
---|---|
eldmressnALTV | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmres 36480 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦))) | |
2 | elsng 4579 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) | |
3 | eldmg 5820 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦)) | |
4 | 3 | bicomd 222 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦 𝐵𝑅𝑦 ↔ 𝐵 ∈ dom 𝑅)) |
5 | 2, 4 | anbi12d 632 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅))) |
6 | 1, 5 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅))) |
7 | eqelb 36440 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅)) | |
8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {csn 4565 class class class wbr 5081 dom cdm 5600 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-dm 5610 df-res 5612 |
This theorem is referenced by: refressn 36657 |
Copyright terms: Public domain | W3C validator |