Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmressnALTV Structured version   Visualization version   GIF version

Theorem eldmressnALTV 37630
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
eldmressnALTV (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))

Proof of Theorem eldmressnALTV
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres 37628 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦)))
2 elsng 4634 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
3 eldmg 5888 . . . . 5 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦))
43bicomd 222 . . . 4 (𝐵𝑉 → (∃𝑦 𝐵𝑅𝑦𝐵 ∈ dom 𝑅))
52, 4anbi12d 630 . . 3 (𝐵𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
61, 5bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
7 eqelb 37591 . 2 ((𝐵 = 𝐴𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅))
86, 7bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  {csn 4620   class class class wbr 5138  dom cdm 5666  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-dm 5676  df-res 5678
This theorem is referenced by:  refressn  37803
  Copyright terms: Public domain W3C validator