Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmressnALTV Structured version   Visualization version   GIF version

Theorem eldmressnALTV 38310
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
eldmressnALTV (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))

Proof of Theorem eldmressnALTV
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres 38308 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦)))
2 elsng 4587 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
3 eldmg 5837 . . . . 5 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦))
43bicomd 223 . . . 4 (𝐵𝑉 → (∃𝑦 𝐵𝑅𝑦𝐵 ∈ dom 𝑅))
52, 4anbi12d 632 . . 3 (𝐵𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
61, 5bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
7 eqelb 38275 . 2 ((𝐵 = 𝐴𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅))
86, 7bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {csn 4573   class class class wbr 5089  dom cdm 5614  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-dm 5624  df-res 5626
This theorem is referenced by:  refressn  38544
  Copyright terms: Public domain W3C validator