| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmressnALTV | Structured version Visualization version GIF version | ||
| Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.) |
| Ref | Expression |
|---|---|
| eldmressnALTV | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres 38308 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦))) | |
| 2 | elsng 4587 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴)) | |
| 3 | eldmg 5837 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦)) | |
| 4 | 3 | bicomd 223 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦 𝐵𝑅𝑦 ↔ 𝐵 ∈ dom 𝑅)) |
| 5 | 2, 4 | anbi12d 632 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅))) |
| 6 | 1, 5 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅))) |
| 7 | eqelb 38275 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅)) | |
| 8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {csn 4573 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-res 5626 |
| This theorem is referenced by: refressn 38544 |
| Copyright terms: Public domain | W3C validator |