Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmressnALTV Structured version   Visualization version   GIF version

Theorem eldmressnALTV 36482
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
eldmressnALTV (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))

Proof of Theorem eldmressnALTV
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres 36480 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦)))
2 elsng 4579 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
3 eldmg 5820 . . . . 5 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦))
43bicomd 222 . . . 4 (𝐵𝑉 → (∃𝑦 𝐵𝑅𝑦𝐵 ∈ dom 𝑅))
52, 4anbi12d 632 . . 3 (𝐵𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
61, 5bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
7 eqelb 36440 . 2 ((𝐵 = 𝐴𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅))
86, 7bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  {csn 4565   class class class wbr 5081  dom cdm 5600  cres 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-dm 5610  df-res 5612
This theorem is referenced by:  refressn  36657
  Copyright terms: Public domain W3C validator