Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmressnALTV Structured version   Visualization version   GIF version

Theorem eldmressnALTV 38254
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
eldmressnALTV (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))

Proof of Theorem eldmressnALTV
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmres 38252 . . 3 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦)))
2 elsng 4645 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝐴} ↔ 𝐵 = 𝐴))
3 eldmg 5912 . . . . 5 (𝐵𝑉 → (𝐵 ∈ dom 𝑅 ↔ ∃𝑦 𝐵𝑅𝑦))
43bicomd 223 . . . 4 (𝐵𝑉 → (∃𝑦 𝐵𝑅𝑦𝐵 ∈ dom 𝑅))
52, 4anbi12d 632 . . 3 (𝐵𝑉 → ((𝐵 ∈ {𝐴} ∧ ∃𝑦 𝐵𝑅𝑦) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
61, 5bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐵 ∈ dom 𝑅)))
7 eqelb 38216 . 2 ((𝐵 = 𝐴𝐵 ∈ dom 𝑅) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅))
86, 7bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝐵 = 𝐴𝐴 ∈ dom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  {csn 4631   class class class wbr 5148  dom cdm 5689  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-dm 5699  df-res 5701
This theorem is referenced by:  refressn  38425
  Copyright terms: Public domain W3C validator