| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aecom-o | Structured version Visualization version GIF version | ||
| Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2432 using ax-c11 38888. Unlike axc11nfromc11 38927, this version does not require ax-5 1910 (see comment of equcomi1 38901). (Contributed by NM, 10-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| aecom-o | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c11 38888 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
| 2 | 1 | pm2.43i 52 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
| 3 | equcomi1 38901 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 4 | 3 | alimi 1811 | . 2 ⊢ (∀𝑦 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-c5 38884 ax-c4 38885 ax-c7 38886 ax-c10 38887 ax-c11 38888 ax-c9 38891 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: aecoms-o 38903 naecoms-o 38928 aev-o 38932 ax12indalem 38946 |
| Copyright terms: Public domain | W3C validator |