Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aecom-o Structured version   Visualization version   GIF version

Theorem aecom-o 38946
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2427 using ax-c11 38932. Unlike axc11nfromc11 38971, this version does not require ax-5 1911 (see comment of equcomi1 38945). (Contributed by NM, 10-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
aecom-o (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem aecom-o
StepHypRef Expression
1 ax-c11 38932 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
21pm2.43i 52 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
3 equcomi1 38945 . . 3 (𝑥 = 𝑦𝑦 = 𝑥)
43alimi 1812 . 2 (∀𝑦 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
52, 4syl 17 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-c5 38928  ax-c4 38929  ax-c7 38930  ax-c10 38931  ax-c11 38932  ax-c9 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  aecoms-o  38947  naecoms-o  38972  aev-o  38976  ax12indalem  38990
  Copyright terms: Public domain W3C validator