Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equs4 | Structured version Visualization version GIF version |
Description: Lemma used in proofs of implicit substitution properties. The converse requires either a disjoint variable condition (sbalex 2238) or a nonfreeness hypothesis (equs45f 2459). Usage of this theorem is discouraged because it depends on ax-13 2372. See equs4v 2004 for a weaker version requiring fewer axioms. (Contributed by NM, 10-May-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equs4 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2383 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exintr 1896 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equsex 2418 equs45f 2459 equs5 2460 sb1OLD 2482 bj-sbsb 34947 |
Copyright terms: Public domain | W3C validator |