Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equs5 | Structured version Visualization version GIF version |
Description: Lemma used in proofs of substitution properties. If there is a disjoint variable condition on 𝑥, 𝑦, then sbalex 2238 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2459 can be used. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equs5 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2151 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfa1 2150 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | axc15 2422 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
4 | 3 | impd 410 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 1, 2, 4 | exlimd 2214 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
6 | equs4 2416 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
7 | 5, 6 | impbid1 224 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: sb3b 2477 sb3OLD 2481 bj-sbsb 34947 |
Copyright terms: Public domain | W3C validator |