MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5 Structured version   Visualization version   GIF version

Theorem equs5 2460
Description: Lemma used in proofs of substitution properties. If there is a disjoint variable condition on 𝑥, 𝑦, then sbalex 2235 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2459 can be used. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.) (New usage is discouraged.)
Assertion
Ref Expression
equs5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem equs5
StepHypRef Expression
1 nfna1 2149 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 nfa1 2148 . . 3 𝑥𝑥(𝑥 = 𝑦𝜑)
3 axc15 2422 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
43impd 411 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 2, 4exlimd 2211 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 equs4 2416 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6impbid1 224 1 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  sb3b  2477  sb3OLD  2481  bj-sbsb  35020
  Copyright terms: Public domain W3C validator