MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5 Structured version   Visualization version   GIF version

Theorem equs5 2480
Description: Lemma used in proofs of substitution properties. If there is a disjoint variable condition on 𝑥, 𝑦, then sb56 2307 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2479 can be used. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.)
Assertion
Ref Expression
equs5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem equs5
StepHypRef Expression
1 nfna1 2205 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 nfa1 2204 . . 3 𝑥𝑥(𝑥 = 𝑦𝜑)
3 axc15 2442 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
43impd 400 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
51, 2, 4exlimd 2263 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
6 equs4 2436 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
75, 6impbid1 217 1 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wal 1656  wex 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-10 2194  ax-12 2222  ax-13 2390
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ex 1881  df-nf 1885
This theorem is referenced by:  sb3  2484  sb4  2486  bj-sbsb  33347
  Copyright terms: Public domain W3C validator