| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equs45f | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2421 and does not require the nonfreeness hypothesis. Theorem sbalex 2242 replaces the nonfreeness hypothesis with a disjoint variable condition and equs5 2465 replaces it with a distinctor antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2377. Use sbalex 2242 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equs45f.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| equs45f | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs45f.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nf5ri 2195 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) |
| 3 | 2 | anim2i 617 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
| 4 | 3 | eximi 1835 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
| 5 | equs5a 2462 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 7 | equs4 2421 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 8 | 6, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb5f 2503 |
| Copyright terms: Public domain | W3C validator |