MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs45f Structured version   Visualization version   GIF version

Theorem equs45f 2457
Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2414 and does not require the nonfreeness hypothesis. Theorem sbalex 2234 replaces the nonfreeness hypothesis with a disjoint variable condition and equs5 2458 replaces it with a distinctor antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2370. Use sbalex 2234 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
equs45f.1 𝑦𝜑
Assertion
Ref Expression
equs45f (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6 𝑦𝜑
21nf5ri 2187 . . . . 5 (𝜑 → ∀𝑦𝜑)
32anim2i 616 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑))
43eximi 1836 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
5 equs5a 2455 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl 17 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
7 equs4 2414 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
86, 7impbii 208 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by:  sb5f  2496
  Copyright terms: Public domain W3C validator