 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs45f Structured version   Visualization version   GIF version

Theorem equs45f 2394
 Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2349 and does not require the non-freeness hypothesis. Theorem sb56 2204 replaces the non-freeness hypothesis with a disjoint variable condition and equs5 2395 replaces it with a distinctor as antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
equs45f.1 𝑦𝜑
Assertion
Ref Expression
equs45f (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6 𝑦𝜑
21nf5ri 2121 . . . . 5 (𝜑 → ∀𝑦𝜑)
32anim2i 607 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑))
43eximi 1797 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
5 equs5a 2392 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl 17 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
7 equs4 2349 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
86, 7impbii 201 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387  ∀wal 1505  ∃wex 1742  Ⅎwnf 1746 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-10 2077  ax-12 2104  ax-13 2299 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ex 1743  df-nf 1747 This theorem is referenced by:  sb5f  2457  sb5fALT  2527
 Copyright terms: Public domain W3C validator