MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs45f Structured version   Visualization version   GIF version

Theorem equs45f 2478
Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2434 and does not require the non-freeness hypothesis. Theorem sb56 2273 replaces the non-freeness hypothesis with a disjoint variable condition and equs5 2479 replaces it with a distinctor as antecedent. Usage of this theorem is discouraged because it depends on ax-13 2386. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
equs45f.1 𝑦𝜑
Assertion
Ref Expression
equs45f (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6 𝑦𝜑
21nf5ri 2191 . . . . 5 (𝜑 → ∀𝑦𝜑)
32anim2i 618 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑))
43eximi 1831 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
5 equs5a 2476 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl 17 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
7 equs4 2434 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
86, 7impbii 211 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wex 1776  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-10 2141  ax-12 2173  ax-13 2386
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1777  df-nf 1781
This theorem is referenced by:  sb5f  2534  sb5fALT  2599
  Copyright terms: Public domain W3C validator