MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexALT Structured version   Visualization version   GIF version

Theorem equsexALT 2427
Description: Alternate proof of equsex 2426. This proves the result directly, instead of as a corollary of equsal 2425 via equs4 2424. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2380 is ax6e 2391. This proof mimics that of equsal 2425 (in particular, note that pm5.32i 574, exbii 1846, 19.41 2236, mpbiran 708 correspond respectively to pm5.74i 271, albii 1817, 19.23 2212, a1bi 362). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsal.1 𝑥𝜓
equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexALT (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsexALT
StepHypRef Expression
1 equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21pm5.32i 574 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
32exbii 1846 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝑦𝜓))
4 ax6e 2391 . . 3 𝑥 𝑥 = 𝑦
5 equsal.1 . . . 4 𝑥𝜓
6519.41 2236 . . 3 (∃𝑥(𝑥 = 𝑦𝜓) ↔ (∃𝑥 𝑥 = 𝑦𝜓))
74, 6mpbiran 708 . 2 (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
83, 7bitri 275 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator