MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexALT Structured version   Visualization version   GIF version

Theorem equsexALT 2413
Description: Alternate proof of equsex 2412. This proves the result directly, instead of as a corollary of equsal 2411 via equs4 2410. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2366 is ax6e 2377. This proof mimics that of equsal 2411 (in particular, note that pm5.32i 573, exbii 1842, 19.41 2223, mpbiran 707 correspond respectively to pm5.74i 270, albii 1813, 19.23 2199, a1bi 361). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsal.1 𝑥𝜓
equsal.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexALT (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Proof of Theorem equsexALT
StepHypRef Expression
1 equsal.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21pm5.32i 573 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
32exbii 1842 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝑦𝜓))
4 ax6e 2377 . . 3 𝑥 𝑥 = 𝑦
5 equsal.1 . . . 4 𝑥𝜓
6519.41 2223 . . 3 (∃𝑥(𝑥 = 𝑦𝜓) ↔ (∃𝑥 𝑥 = 𝑦𝜓))
74, 6mpbiran 707 . 2 (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
83, 7bitri 274 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2166  ax-13 2366
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-nf 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator