| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsexALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of equsex 2418. This proves the result directly, instead of as a corollary of equsal 2417 via equs4 2416. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2372 is ax6e 2383. This proof mimics that of equsal 2417 (in particular, note that pm5.32i 574, exbii 1849, 19.41 2238, mpbiran 709 correspond respectively to pm5.74i 271, albii 1820, 19.23 2214, a1bi 362). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equsal.1 | ⊢ Ⅎ𝑥𝜓 |
| equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsexALT | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ 𝜓)) |
| 3 | 2 | exbii 1849 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
| 4 | ax6e 2383 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 5 | equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | 19.41 2238 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜓)) |
| 7 | 4, 6 | mpbiran 709 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜓) |
| 8 | 3, 7 | bitri 275 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |