![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexALT | Structured version Visualization version GIF version |
Description: Alternate proof of equsex 2425. This proves the result directly, instead of as a corollary of equsal 2424 via equs4 2423. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2377 is ax6e 2390. This proof mimics that of equsal 2424 (in particular, note that pm5.32i 571, exbii 1944, 19.41 2270, mpbiran 701 correspond respectively to pm5.74i 263, albii 1915, 19.23 2246, a1bi 354). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexALT | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 571 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ 𝜓)) |
3 | 2 | exbii 1944 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
4 | ax6e 2390 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | 19.41 2270 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜓)) |
7 | 4, 6 | mpbiran 701 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜓) |
8 | 3, 7 | bitri 267 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-nf 1880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |