![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexALT | Structured version Visualization version GIF version |
Description: Alternate proof of equsex 2426. This proves the result directly, instead of as a corollary of equsal 2425 via equs4 2424. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2380 is ax6e 2391. This proof mimics that of equsal 2425 (in particular, note that pm5.32i 574, exbii 1846, 19.41 2236, mpbiran 708 correspond respectively to pm5.74i 271, albii 1817, 19.23 2212, a1bi 362). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexALT | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ 𝜓)) |
3 | 2 | exbii 1846 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
4 | ax6e 2391 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | 19.41 2236 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜓)) |
7 | 4, 6 | mpbiran 708 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜓) |
8 | 3, 7 | bitri 275 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |