Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eu3v | Structured version Visualization version GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Replace a nonfreeness hypothesis with a disjoint variable condition on 𝜑, 𝑦 to reduce axiom usage. (Revised by Wolf Lammen, 29-May-2019.) |
Ref | Expression |
---|---|
eu3v | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2589 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | df-mo 2558 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
3 | 2 | anbi2i 626 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | 1, 3 | bitri 278 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∀wal 1537 ∃wex 1782 ∃*wmo 2556 ∃!weu 2588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-mo 2558 df-eu 2589 |
This theorem is referenced by: eu6 2594 eu6im 2595 euequ 2618 euae 2682 eqeu 3621 reu3 3642 |
Copyright terms: Public domain | W3C validator |