![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu3v | Structured version Visualization version GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Add a disjoint variable condition on 𝜑, 𝑦. (Revised by Wolf Lammen, 29-May-2019.) |
Ref | Expression |
---|---|
eu3v | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2609 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | df-mo 2591 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
3 | 2 | anbi2i 617 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | 1, 3 | bitri 267 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 ∃wex 1875 ∃*wmo 2589 ∃!weu 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-mo 2591 df-eu 2609 |
This theorem is referenced by: eu6 2613 eqeu 3571 reu3 3592 eunexOLD 5060 |
Copyright terms: Public domain | W3C validator |