Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu3v Structured version   Visualization version   GIF version

Theorem eu3v 2590
 Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Replace a nonfreeness hypothesis with a disjoint variable condition on 𝜑, 𝑦 to reduce axiom usage. (Revised by Wolf Lammen, 29-May-2019.)
Assertion
Ref Expression
eu3v (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eu3v
StepHypRef Expression
1 df-eu 2589 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
2 df-mo 2558 . . 3 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
32anbi2i 626 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
41, 3bitri 278 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400  ∀wal 1537  ∃wex 1782  ∃*wmo 2556  ∃!weu 2588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 401  df-mo 2558  df-eu 2589 This theorem is referenced by:  eu6  2594  eu6im  2595  euequ  2618  euae  2682  eqeu  3621  reu3  3642
 Copyright terms: Public domain W3C validator