Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeu | Structured version Visualization version GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
Ref | Expression |
---|---|
eqeu.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqeu | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeu.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spcegv 3534 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑)) |
3 | 2 | imp 407 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥𝜑) |
4 | 3 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑥𝜑) |
5 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
6 | 5 | imbi2d 341 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) |
7 | 6 | albidv 1923 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) |
8 | 7 | spcegv 3534 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
9 | 8 | imp 407 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
10 | 9 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
11 | eu3v 2570 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: rngurd 31468 neibastop3 34537 upixp 35873 zrinitorngc 45514 zrtermorngc 45515 zrtermoringc 45584 |
Copyright terms: Public domain | W3C validator |