MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeu Structured version   Visualization version   GIF version

Theorem eqeu 3641
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
eqeu ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem eqeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21spcegv 3534 . . . 4 (𝐴𝐵 → (𝜓 → ∃𝑥𝜑))
32imp 407 . . 3 ((𝐴𝐵𝜓) → ∃𝑥𝜑)
433adant3 1131 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑥𝜑)
5 eqeq2 2750 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
65imbi2d 341 . . . . . 6 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
76albidv 1923 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
87spcegv 3534 . . . 4 (𝐴𝐵 → (∀𝑥(𝜑𝑥 = 𝐴) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
98imp 407 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
1093adant2 1130 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
11 eu3v 2570 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
124, 10, 11sylanbrc 583 1 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  rngurd  31468  neibastop3  34537  upixp  35873  zrinitorngc  45514  zrtermorngc  45515  zrtermoringc  45584
  Copyright terms: Public domain W3C validator