|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eqeu | Structured version Visualization version GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) | 
| Ref | Expression | 
|---|---|
| eqeu.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| eqeu | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeu.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | spcegv 3596 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑)) | 
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥𝜑) | 
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑥𝜑) | 
| 5 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 6 | 5 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) | 
| 7 | 6 | albidv 1919 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) | 
| 8 | 7 | spcegv 3596 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 9 | 8 | imp 406 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 10 | 9 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 11 | eu3v 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
| 12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 | 
| This theorem is referenced by: ringurd 20183 zrinitorngc 20643 zrtermorngc 20644 zrtermoringc 20676 neibastop3 36364 upixp 37737 | 
| Copyright terms: Public domain | W3C validator |