MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeu Structured version   Visualization version   GIF version

Theorem eqeu 3571
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
eqeu ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem eqeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21spcegv 3482 . . . 4 (𝐴𝐵 → (𝜓 → ∃𝑥𝜑))
32imp 396 . . 3 ((𝐴𝐵𝜓) → ∃𝑥𝜑)
433adant3 1163 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑥𝜑)
5 eqeq2 2810 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
65imbi2d 332 . . . . . 6 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
76albidv 2016 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
87spcegv 3482 . . . 4 (𝐴𝐵 → (∀𝑥(𝜑𝑥 = 𝐴) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
98imp 396 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
1093adant2 1162 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
11 eu3v 2610 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
124, 10, 11sylanbrc 579 1 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108  wal 1651   = wceq 1653  wex 1875  wcel 2157  ∃!weu 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-v 3387
This theorem is referenced by:  rngurd  30304  neibastop3  32869  upixp  34012  zrinitorngc  42799  zrtermorngc  42800  zrtermoringc  42869
  Copyright terms: Public domain W3C validator