MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu3 Structured version   Visualization version   GIF version

Theorem reu3 3657
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu3
StepHypRef Expression
1 reurex 3352 . . 3 (∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
2 reu6 3656 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
3 biimp 214 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
43ralimi 3086 . . . . 5 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) → ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
54reximi 3174 . . . 4 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
62, 5sylbi 216 . . 3 (∃!𝑥𝐴 𝜑 → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
71, 6jca 511 . 2 (∃!𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
8 rexex 3167 . . . 4 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
98anim2i 616 . . 3 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)) → (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)))
10 eu3v 2570 . . . 4 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦)))
11 df-reu 3070 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
12 df-rex 3069 . . . . 5 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
13 df-ral 3068 . . . . . . 7 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
14 impexp 450 . . . . . . . 8 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1514albii 1823 . . . . . . 7 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1613, 15bitr4i 277 . . . . . 6 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
1716exbii 1851 . . . . 5 (∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
1812, 17anbi12i 626 . . . 4 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦)))
1910, 11, 183bitr4i 302 . . 3 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦)))
209, 19sylibr 233 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)) → ∃!𝑥𝐴 𝜑)
217, 20impbii 208 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  wcel 2108  ∃!weu 2568  wral 3063  wrex 3064  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071
This theorem is referenced by:  reu7  3662  2reu4lem  4453  reu3op  6184
  Copyright terms: Public domain W3C validator