![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu6im | Structured version Visualization version GIF version |
Description: One direction of eu6 2645 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.) |
Ref | Expression |
---|---|
eu6im | ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6lem 2644 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
2 | exsbim 2106 | . . . 4 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 2 | anim1i 608 | . . 3 ⊢ ((∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) → (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
4 | 1, 3 | sylbi 209 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
5 | eu3v 2641 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
6 | 4, 5 | sylibr 226 | 1 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1654 ∃wex 1878 ∃!weu 2639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-mo 2605 df-eu 2640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |