MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu6im Structured version   Visualization version   GIF version

Theorem eu6im 2575
Description: One direction of eu6 2574 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.)
Assertion
Ref Expression
eu6im (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃!𝑥𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eu6im
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exsbim 2006 . . 3 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
21anim1i 614 . 2 ((∃𝑦𝑥(𝑥 = 𝑦𝜑) ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)) → (∃𝑥𝜑 ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
3 eu6lem 2573 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑦𝑥(𝑥 = 𝑦𝜑) ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
4 eu3v 2570 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
52, 3, 43imtr4i 291 1 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540  df-eu 2569
This theorem is referenced by:  eufsnlem  46056
  Copyright terms: Public domain W3C validator