MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu6im Structured version   Visualization version   GIF version

Theorem eu6im 2646
Description: One direction of eu6 2645 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.)
Assertion
Ref Expression
eu6im (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃!𝑥𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eu6im
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6lem 2644 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑦𝑥(𝑥 = 𝑦𝜑) ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
2 exsbim 2106 . . . 4 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
32anim1i 608 . . 3 ((∃𝑦𝑥(𝑥 = 𝑦𝜑) ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)) → (∃𝑥𝜑 ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
41, 3sylbi 209 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥𝜑 ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
5 eu3v 2641 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑧𝑥(𝜑𝑥 = 𝑧)))
64, 5sylibr 226 1 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1654  wex 1878  ∃!weu 2639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1879  df-mo 2605  df-eu 2640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator