|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eu6im | Structured version Visualization version GIF version | ||
| Description: One direction of eu6 2574 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| eu6im | ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exsbim 2001 | . . 3 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) → (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | 
| 3 | eu6lem 2573 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
| 4 | eu3v 2570 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃!𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: eufsnlem 48750 | 
| Copyright terms: Public domain | W3C validator |