| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eu6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the unique existential quantifier df-eu 2562 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2562 was then proved as dfeu 2588. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Remove use of ax-11 2158. (Revised by SN, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| eu6 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmoeu 2529 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 2 | 1 | anbi2i 623 | . . 3 ⊢ ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 3 | abai 826 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | |
| 4 | eu3v 2563 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 6 | abai 826 | . . 3 ⊢ ((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) | |
| 7 | ancom 460 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) | |
| 8 | biimpr 220 | . . . . . . 7 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
| 9 | 8 | alimi 1811 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 10 | 9 | eximi 1835 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 11 | exsbim 2002 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
| 13 | 12 | biantru 529 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
| 14 | 6, 7, 13 | 3bitr4i 303 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 15 | 5, 14 | bitri 275 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: euf 2569 nfeu1 2581 dfmo 2589 sb8eulem 2591 reu6 3697 euabsn2 4689 eunex 5345 euotd 5473 iotauni 6486 iota1 6488 iotanul 6489 iotaexOLD 6491 iota4 6492 fv3 6876 eufnfv 7203 seqomlem2 8419 aceq1 10070 dfac5 10082 bnj89 34711 cbveud 37360 wl-eudf 37560 wl-euequf 37562 wl-sb8eut 37566 wl-sb8eutv 37567 iotain 44406 iotaexeu 44407 iotasbc 44408 iotavalsb 44422 sbiota1 44423 dfac5prim 44980 permac8prim 45004 eusnsn 47027 mo0sn 48804 |
| Copyright terms: Public domain | W3C validator |