![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu6 | Structured version Visualization version GIF version |
Description: Alternate definition of the unique existential quantifier df-eu 2563 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2563 was then proved as dfeu 2589. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Remove use of ax-11 2154. (Revised by SN, 21-Sep-2023.) |
Ref | Expression |
---|---|
eu6 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmoeu 2530 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | 1 | anbi2i 623 | . . 3 ⊢ ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
3 | abai 825 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | |
4 | eu3v 2564 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
5 | 2, 3, 4 | 3bitr4ri 303 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
6 | abai 825 | . . 3 ⊢ ((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) | |
7 | ancom 461 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) | |
8 | biimpr 219 | . . . . . . 7 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
9 | 8 | alimi 1813 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
10 | 9 | eximi 1837 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
11 | exsbim 2005 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
13 | 12 | biantru 530 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
14 | 6, 7, 13 | 3bitr4i 302 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
15 | 5, 14 | bitri 274 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∃wex 1781 ∃!weu 2562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-mo 2534 df-eu 2563 |
This theorem is referenced by: euf 2570 nfeu1 2582 dfmo 2590 sb8eulem 2592 reu6 3722 euabsn2 4729 eunex 5388 euotd 5513 iotauni 6518 iota1 6520 iotanul 6521 iotaexOLD 6523 iota4 6524 fv3 6909 eufnfv 7230 seqomlem2 8450 aceq1 10111 dfac5 10122 bnj89 33727 cbveud 36248 wl-eudf 36432 wl-euequf 36434 wl-sb8eut 36437 iotain 43166 iotaexeu 43167 iotasbc 43168 iotavalsb 43182 sbiota1 43183 eusnsn 45726 mo0sn 47490 |
Copyright terms: Public domain | W3C validator |