![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu6 | Structured version Visualization version GIF version |
Description: Alternate definition of the unique existential quantifier df-eu 2580 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2580 was then proved as dfeu 2607. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) |
Ref | Expression |
---|---|
eu6 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsb 2290 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | 1 | anbi1i 614 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) |
3 | eu3v 2581 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
4 | eu6lem 2584 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | |
5 | 2, 3, 4 | 3bitr4i 295 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 ∃wex 1742 ∃!weu 2579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-10 2077 ax-11 2091 ax-12 2104 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ex 1743 df-nf 1747 df-mo 2544 df-eu 2580 |
This theorem is referenced by: euf 2588 eufOLD 2589 nfeu1 2602 dfmo 2608 euequOLD 2610 eubidvOLD 2613 nfeud2OLD 2616 eubidOLDOLD 2620 euexOLD 2622 sb8eulem 2626 euaeOLD 2687 reu6 3625 euabsn2 4529 eunex 5137 euotd 5252 iotauni 6158 iota1 6160 iotanul 6161 iotaex 6163 iota4 6164 fv3 6511 eufnfv 6811 seqomlem2 7883 aceq1 9329 dfac5 9340 bnj89 31600 bj-eunex 33567 cbveud 34030 wl-eudf 34197 wl-euequf 34199 wl-sb8eut 34202 iotain 40110 iotaexeu 40111 iotasbc 40112 iotavalsb 40126 sbiota1 40127 eusnsn 42612 |
Copyright terms: Public domain | W3C validator |