| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eu6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the unique existential quantifier df-eu 2564 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2564 was then proved as dfeu 2590. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Remove use of ax-11 2160. (Revised by SN, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| eu6 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmoeu 2531 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 2 | 1 | anbi2i 623 | . . 3 ⊢ ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 3 | abai 826 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)))) | |
| 4 | eu3v 2565 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 6 | abai 826 | . . 3 ⊢ ((∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) | |
| 7 | ancom 460 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑥𝜑)) | |
| 8 | biimpr 220 | . . . . . . 7 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
| 9 | 8 | alimi 1812 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 10 | 9 | eximi 1836 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 11 | exsbim 2003 | . . . . 5 ⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
| 13 | 12 | biantru 529 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑))) |
| 14 | 6, 7, 13 | 3bitr4i 303 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 15 | 5, 14 | bitri 275 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: euf 2571 nfeu1 2583 dfmo 2591 sb8eulem 2593 reu6 3680 euabsn2 4675 eunex 5326 euotd 5451 iotauni 6458 iota1 6460 iotanul 6461 iota4 6462 fv3 6840 eufnfv 7163 seqomlem2 8370 aceq1 10008 dfac5 10020 bnj89 34733 cbveud 37416 wl-eudf 37616 wl-euequf 37618 wl-sb8eut 37622 wl-sb8eutv 37623 iotain 44520 iotaexeu 44521 iotasbc 44522 iotavalsb 44536 sbiota1 44537 dfac5prim 45093 permac8prim 45117 eusnsn 47136 mo0sn 48926 |
| Copyright terms: Public domain | W3C validator |