MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu6 Structured version   Visualization version   GIF version

Theorem eu6 2574
Description: Alternate definition of the unique existential quantifier df-eu 2569 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2569 was then proved as dfeu 2595. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Remove use of ax-11 2154. (Revised by SN, 21-Sep-2023.)
Assertion
Ref Expression
eu6 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eu6
StepHypRef Expression
1 dfmoeu 2536 . . . 4 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
21anbi2i 623 . . 3 ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
3 abai 824 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))))
4 eu3v 2570 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
52, 3, 43bitr4ri 304 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
6 abai 824 . . 3 ((∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
7 ancom 461 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑))
8 biimpr 219 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
98alimi 1814 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑))
109eximi 1837 . . . . 5 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
11 exsbim 2005 . . . . 5 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
1210, 11syl 17 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)
1312biantru 530 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
146, 7, 133bitr4i 303 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
155, 14bitri 274 1 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  euf  2576  nfeu1  2588  dfmo  2596  sb8eulem  2598  reu6  3661  euabsn2  4661  eunex  5313  euotd  5427  iotauni  6408  iota1  6410  iotanul  6411  iotaex  6413  iota4  6414  fv3  6792  eufnfv  7105  seqomlem2  8282  aceq1  9873  dfac5  9884  bnj89  32700  cbveud  35543  wl-eudf  35727  wl-euequf  35729  wl-sb8eut  35732  iotain  42035  iotaexeu  42036  iotasbc  42037  iotavalsb  42051  sbiota1  42052  eusnsn  44520  mo0sn  46161
  Copyright terms: Public domain W3C validator