MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu6 Structured version   Visualization version   GIF version

Theorem eu6 2568
Description: Alternate definition of the unique existential quantifier df-eu 2563 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2563 was then proved as dfeu 2589. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Remove use of ax-11 2158. (Revised by SN, 21-Sep-2023.)
Assertion
Ref Expression
eu6 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eu6
StepHypRef Expression
1 dfmoeu 2530 . . . 4 ((∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
21anbi2i 623 . . 3 ((∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
3 abai 826 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))))
4 eu3v 2564 . . 3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
52, 3, 43bitr4ri 304 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
6 abai 826 . . 3 ((∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
7 ancom 460 . . 3 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑥𝜑))
8 biimpr 220 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
98alimi 1811 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝜑))
109eximi 1835 . . . . 5 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
11 exsbim 2002 . . . . 5 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
1210, 11syl 17 . . . 4 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)
1312biantru 529 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ (∃𝑦𝑥(𝜑𝑥 = 𝑦) ∧ (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥𝜑)))
146, 7, 133bitr4i 303 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
155, 14bitri 275 1 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-mo 2534  df-eu 2563
This theorem is referenced by:  euf  2570  nfeu1  2582  dfmo  2590  sb8eulem  2592  reu6  3700  euabsn2  4692  eunex  5348  euotd  5476  iotauni  6489  iota1  6491  iotanul  6492  iotaexOLD  6494  iota4  6495  fv3  6879  eufnfv  7206  seqomlem2  8422  aceq1  10077  dfac5  10089  bnj89  34718  cbveud  37367  wl-eudf  37567  wl-euequf  37569  wl-sb8eut  37573  wl-sb8eutv  37574  iotain  44413  iotaexeu  44414  iotasbc  44415  iotavalsb  44429  sbiota1  44430  dfac5prim  44987  permac8prim  45011  eusnsn  47031  mo0sn  48808
  Copyright terms: Public domain W3C validator