Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcvg4 Structured version   Visualization version   GIF version

Theorem fsumcvg4 31193
Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fsumcvg4.s 𝑆 = (ℤ𝑀)
fsumcvg4.m (𝜑𝑀 ∈ ℤ)
fsumcvg4.c (𝜑𝐹:𝑆⟶ℂ)
fsumcvg4.f (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
Assertion
Ref Expression
fsumcvg4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )

Proof of Theorem fsumcvg4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumcvg4.s . 2 𝑆 = (ℤ𝑀)
2 fsumcvg4.m . 2 (𝜑𝑀 ∈ ℤ)
3 fsumcvg4.f . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
4 fsumcvg4.c . . . . 5 (𝜑𝐹:𝑆⟶ℂ)
5 ffun 6517 . . . . 5 (𝐹:𝑆⟶ℂ → Fun 𝐹)
6 difpreima 6835 . . . . 5 (Fun 𝐹 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
74, 5, 63syl 18 . . . 4 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
8 difss 4108 . . . 4 ((𝐹 “ ℂ) ∖ (𝐹 “ {0})) ⊆ (𝐹 “ ℂ)
97, 8eqsstrdi 4021 . . 3 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ (𝐹 “ ℂ))
10 fimacnv 6839 . . . 4 (𝐹:𝑆⟶ℂ → (𝐹 “ ℂ) = 𝑆)
114, 10syl 17 . . 3 (𝜑 → (𝐹 “ ℂ) = 𝑆)
129, 11sseqtrd 4007 . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ 𝑆)
13 exmidd 892 . . . 4 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
14 eqid 2821 . . . . . . 7 (𝐹𝑘) = (𝐹𝑘)
1514biantru 532 . . . . . 6 (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)))
1615a1i 11 . . . . 5 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘))))
171fvexi 6684 . . . . . . . . . . . . . 14 𝑆 ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ V)
19 0nn0 11913 . . . . . . . . . . . . . 14 0 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
21 eqid 2821 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (ℂ ∖ {0})
2221ffs2 30464 . . . . . . . . . . . . 13 ((𝑆 ∈ V ∧ 0 ∈ ℕ0𝐹:𝑆⟶ℂ) → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
2318, 20, 4, 22syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
244ffnd 6515 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑆)
25 suppvalfn 7837 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑆𝑆 ∈ V ∧ 0 ∈ ℕ0) → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2624, 18, 20, 25syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2723, 26eqtr3d 2858 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2827eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ 𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0}))
29 rabid 3378 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0} ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0))
3028, 29syl6bb 289 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0)))
3130baibd 542 . . . . . . . 8 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝐹𝑘) ≠ 0))
3231necon2bbid 3059 . . . . . . 7 ((𝜑𝑘𝑆) → ((𝐹𝑘) = 0 ↔ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
3332biimprd 250 . . . . . 6 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) → (𝐹𝑘) = 0))
3433pm4.71d 564 . . . . 5 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3516, 34orbi12d 915 . . . 4 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0))))
3613, 35mpbid 234 . . 3 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
37 eqif 4507 . . 3 ((𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3836, 37sylibr 236 . 2 ((𝜑𝑘𝑆) → (𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0))
3912sselda 3967 . . 3 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → 𝑘𝑆)
404ffvelrnda 6851 . . 3 ((𝜑𝑘𝑆) → (𝐹𝑘) ∈ ℂ)
4139, 40syldan 593 . 2 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → (𝐹𝑘) ∈ ℂ)
421, 2, 3, 12, 38, 41fsumcvg3 15086 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  cdif 3933  ifcif 4467  {csn 4567  ccnv 5554  dom cdm 5555  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156   supp csupp 7830  Fincfn 8509  cc 10535  0cc0 10537   + caddc 10540  0cn0 11898  cz 11982  cuz 12244  seqcseq 13370  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by:  eulerpartlems  31618
  Copyright terms: Public domain W3C validator