| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fsumcvg4.s | . 2
⊢ 𝑆 =
(ℤ≥‘𝑀) | 
| 2 |  | fsumcvg4.m | . 2
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 3 |  | fsumcvg4.f | . 2
⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ∈
Fin) | 
| 4 |  | fsumcvg4.c | . . . . 5
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | 
| 5 |  | ffun 6738 | . . . . 5
⊢ (𝐹:𝑆⟶ℂ → Fun 𝐹) | 
| 6 |  | difpreima 7084 | . . . . 5
⊢ (Fun
𝐹 → (◡𝐹 “ (ℂ ∖ {0})) = ((◡𝐹 “ ℂ) ∖ (◡𝐹 “ {0}))) | 
| 7 | 4, 5, 6 | 3syl 18 | . . . 4
⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) = ((◡𝐹 “ ℂ) ∖ (◡𝐹 “ {0}))) | 
| 8 |  | difss 4135 | . . . 4
⊢ ((◡𝐹 “ ℂ) ∖ (◡𝐹 “ {0})) ⊆ (◡𝐹 “ ℂ) | 
| 9 | 7, 8 | eqsstrdi 4027 | . . 3
⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ⊆
(◡𝐹 “ ℂ)) | 
| 10 |  | fimacnv 6757 | . . . 4
⊢ (𝐹:𝑆⟶ℂ → (◡𝐹 “ ℂ) = 𝑆) | 
| 11 | 4, 10 | syl 17 | . . 3
⊢ (𝜑 → (◡𝐹 “ ℂ) = 𝑆) | 
| 12 | 9, 11 | sseqtrd 4019 | . 2
⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ⊆
𝑆) | 
| 13 |  | exmidd 895 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∨ ¬
𝑘 ∈ (◡𝐹 “ (ℂ ∖
{0})))) | 
| 14 |  | eqid 2736 | . . . . . . 7
⊢ (𝐹‘𝑘) = (𝐹‘𝑘) | 
| 15 | 14 | biantru 529 | . . . . . 6
⊢ (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔
(𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = (𝐹‘𝑘))) | 
| 16 | 15 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔
(𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = (𝐹‘𝑘)))) | 
| 17 | 1 | fvexi 6919 | . . . . . . . . . . . . . 14
⊢ 𝑆 ∈ V | 
| 18 | 17 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ V) | 
| 19 |  | 0nn0 12543 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 | 
| 20 | 19 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℕ0) | 
| 21 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (ℂ
∖ {0}) = (ℂ ∖ {0}) | 
| 22 | 21 | ffs2 32740 | . . . . . . . . . . . . 13
⊢ ((𝑆 ∈ V ∧ 0 ∈
ℕ0 ∧ 𝐹:𝑆⟶ℂ) → (𝐹 supp 0) = (◡𝐹 “ (ℂ ∖
{0}))) | 
| 23 | 18, 20, 4, 22 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp 0) = (◡𝐹 “ (ℂ ∖
{0}))) | 
| 24 | 4 | ffnd 6736 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝑆) | 
| 25 |  | suppvalfn 8194 | . . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑆 ∧ 𝑆 ∈ V ∧ 0 ∈
ℕ0) → (𝐹 supp 0) = {𝑘 ∈ 𝑆 ∣ (𝐹‘𝑘) ≠ 0}) | 
| 26 | 24, 18, 20, 25 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp 0) = {𝑘 ∈ 𝑆 ∣ (𝐹‘𝑘) ≠ 0}) | 
| 27 | 23, 26 | eqtr3d 2778 | . . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) = {𝑘 ∈ 𝑆 ∣ (𝐹‘𝑘) ≠ 0}) | 
| 28 | 27 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔ 𝑘 ∈ {𝑘 ∈ 𝑆 ∣ (𝐹‘𝑘) ≠ 0})) | 
| 29 |  | rabid 3457 | . . . . . . . . . 10
⊢ (𝑘 ∈ {𝑘 ∈ 𝑆 ∣ (𝐹‘𝑘) ≠ 0} ↔ (𝑘 ∈ 𝑆 ∧ (𝐹‘𝑘) ≠ 0)) | 
| 30 | 28, 29 | bitrdi 287 | . . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔
(𝑘 ∈ 𝑆 ∧ (𝐹‘𝑘) ≠ 0))) | 
| 31 | 30 | baibd 539 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔
(𝐹‘𝑘) ≠ 0)) | 
| 32 | 31 | necon2bbid 2983 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → ((𝐹‘𝑘) = 0 ↔ ¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖
{0})))) | 
| 33 | 32 | biimprd 248 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) →
(𝐹‘𝑘) = 0)) | 
| 34 | 33 | pm4.71d 561 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ↔
(¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = 0))) | 
| 35 | 16, 34 | orbi12d 918 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → ((𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∨ ¬
𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0}))) ↔
((𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = (𝐹‘𝑘)) ∨ (¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = 0)))) | 
| 36 | 13, 35 | mpbid 232 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → ((𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = (𝐹‘𝑘)) ∨ (¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = 0))) | 
| 37 |  | eqif 4566 | . . 3
⊢ ((𝐹‘𝑘) = if(𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})), (𝐹‘𝑘), 0) ↔ ((𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = (𝐹‘𝑘)) ∨ (¬ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})) ∧ (𝐹‘𝑘) = 0))) | 
| 38 | 36, 37 | sylibr 234 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝐹‘𝑘) = if(𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0})), (𝐹‘𝑘), 0)) | 
| 39 | 12 | sselda 3982 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0}))) →
𝑘 ∈ 𝑆) | 
| 40 | 4 | ffvelcdmda 7103 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝐹‘𝑘) ∈ ℂ) | 
| 41 | 39, 40 | syldan 591 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ (◡𝐹 “ (ℂ ∖ {0}))) →
(𝐹‘𝑘) ∈ ℂ) | 
| 42 | 1, 2, 3, 12, 38, 41 | fsumcvg3 15766 | 1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |