Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcvg4 Structured version   Visualization version   GIF version

Theorem fsumcvg4 33933
Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fsumcvg4.s 𝑆 = (ℤ𝑀)
fsumcvg4.m (𝜑𝑀 ∈ ℤ)
fsumcvg4.c (𝜑𝐹:𝑆⟶ℂ)
fsumcvg4.f (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
Assertion
Ref Expression
fsumcvg4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )

Proof of Theorem fsumcvg4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumcvg4.s . 2 𝑆 = (ℤ𝑀)
2 fsumcvg4.m . 2 (𝜑𝑀 ∈ ℤ)
3 fsumcvg4.f . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
4 fsumcvg4.c . . . . 5 (𝜑𝐹:𝑆⟶ℂ)
5 ffun 6655 . . . . 5 (𝐹:𝑆⟶ℂ → Fun 𝐹)
6 difpreima 6999 . . . . 5 (Fun 𝐹 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
74, 5, 63syl 18 . . . 4 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
8 difss 4087 . . . 4 ((𝐹 “ ℂ) ∖ (𝐹 “ {0})) ⊆ (𝐹 “ ℂ)
97, 8eqsstrdi 3980 . . 3 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ (𝐹 “ ℂ))
10 fimacnv 6674 . . . 4 (𝐹:𝑆⟶ℂ → (𝐹 “ ℂ) = 𝑆)
114, 10syl 17 . . 3 (𝜑 → (𝐹 “ ℂ) = 𝑆)
129, 11sseqtrd 3972 . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ 𝑆)
13 exmidd 895 . . . 4 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
14 eqid 2729 . . . . . . 7 (𝐹𝑘) = (𝐹𝑘)
1514biantru 529 . . . . . 6 (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)))
1615a1i 11 . . . . 5 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘))))
171fvexi 6836 . . . . . . . . . . . . . 14 𝑆 ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ V)
19 0nn0 12399 . . . . . . . . . . . . . 14 0 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
21 eqid 2729 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (ℂ ∖ {0})
2221ffs2 32679 . . . . . . . . . . . . 13 ((𝑆 ∈ V ∧ 0 ∈ ℕ0𝐹:𝑆⟶ℂ) → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
2318, 20, 4, 22syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
244ffnd 6653 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑆)
25 suppvalfn 8101 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑆𝑆 ∈ V ∧ 0 ∈ ℕ0) → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2624, 18, 20, 25syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2723, 26eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2827eleq2d 2814 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ 𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0}))
29 rabid 3416 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0} ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0))
3028, 29bitrdi 287 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0)))
3130baibd 539 . . . . . . . 8 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝐹𝑘) ≠ 0))
3231necon2bbid 2968 . . . . . . 7 ((𝜑𝑘𝑆) → ((𝐹𝑘) = 0 ↔ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
3332biimprd 248 . . . . . 6 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) → (𝐹𝑘) = 0))
3433pm4.71d 561 . . . . 5 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3516, 34orbi12d 918 . . . 4 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0))))
3613, 35mpbid 232 . . 3 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
37 eqif 4518 . . 3 ((𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3836, 37sylibr 234 . 2 ((𝜑𝑘𝑆) → (𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0))
3912sselda 3935 . . 3 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → 𝑘𝑆)
404ffvelcdmda 7018 . . 3 ((𝜑𝑘𝑆) → (𝐹𝑘) ∈ ℂ)
4139, 40syldan 591 . 2 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → (𝐹𝑘) ∈ ℂ)
421, 2, 3, 12, 38, 41fsumcvg3 15636 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cdif 3900  ifcif 4476  {csn 4577  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349   supp csupp 8093  Fincfn 8872  cc 11007  0cc0 11009   + caddc 11012  0cn0 12384  cz 12471  cuz 12735  seqcseq 13908  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395
This theorem is referenced by:  eulerpartlems  34344
  Copyright terms: Public domain W3C validator