Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcvg4 Structured version   Visualization version   GIF version

Theorem fsumcvg4 31201
Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fsumcvg4.s 𝑆 = (ℤ𝑀)
fsumcvg4.m (𝜑𝑀 ∈ ℤ)
fsumcvg4.c (𝜑𝐹:𝑆⟶ℂ)
fsumcvg4.f (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
Assertion
Ref Expression
fsumcvg4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )

Proof of Theorem fsumcvg4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumcvg4.s . 2 𝑆 = (ℤ𝑀)
2 fsumcvg4.m . 2 (𝜑𝑀 ∈ ℤ)
3 fsumcvg4.f . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ∈ Fin)
4 fsumcvg4.c . . . . 5 (𝜑𝐹:𝑆⟶ℂ)
5 ffun 6493 . . . . 5 (𝐹:𝑆⟶ℂ → Fun 𝐹)
6 difpreima 6811 . . . . 5 (Fun 𝐹 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
74, 5, 63syl 18 . . . 4 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = ((𝐹 “ ℂ) ∖ (𝐹 “ {0})))
8 difss 4087 . . . 4 ((𝐹 “ ℂ) ∖ (𝐹 “ {0})) ⊆ (𝐹 “ ℂ)
97, 8eqsstrdi 4000 . . 3 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ (𝐹 “ ℂ))
10 fimacnv 6815 . . . 4 (𝐹:𝑆⟶ℂ → (𝐹 “ ℂ) = 𝑆)
114, 10syl 17 . . 3 (𝜑 → (𝐹 “ ℂ) = 𝑆)
129, 11sseqtrd 3986 . 2 (𝜑 → (𝐹 “ (ℂ ∖ {0})) ⊆ 𝑆)
13 exmidd 892 . . . 4 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
14 eqid 2820 . . . . . . 7 (𝐹𝑘) = (𝐹𝑘)
1514biantru 532 . . . . . 6 (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)))
1615a1i 11 . . . . 5 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘))))
171fvexi 6660 . . . . . . . . . . . . . 14 𝑆 ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ V)
19 0nn0 11891 . . . . . . . . . . . . . 14 0 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
21 eqid 2820 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) = (ℂ ∖ {0})
2221ffs2 30451 . . . . . . . . . . . . 13 ((𝑆 ∈ V ∧ 0 ∈ ℕ0𝐹:𝑆⟶ℂ) → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
2318, 20, 4, 22syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = (𝐹 “ (ℂ ∖ {0})))
244ffnd 6491 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑆)
25 suppvalfn 7815 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑆𝑆 ∈ V ∧ 0 ∈ ℕ0) → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2624, 18, 20, 25syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2723, 26eqtr3d 2857 . . . . . . . . . . 11 (𝜑 → (𝐹 “ (ℂ ∖ {0})) = {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0})
2827eleq2d 2896 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ 𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0}))
29 rabid 3365 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝑆 ∣ (𝐹𝑘) ≠ 0} ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0))
3028, 29syl6bb 289 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝑘𝑆 ∧ (𝐹𝑘) ≠ 0)))
3130baibd 542 . . . . . . . 8 ((𝜑𝑘𝑆) → (𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (𝐹𝑘) ≠ 0))
3231necon2bbid 3049 . . . . . . 7 ((𝜑𝑘𝑆) → ((𝐹𝑘) = 0 ↔ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))))
3332biimprd 250 . . . . . 6 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) → (𝐹𝑘) = 0))
3433pm4.71d 564 . . . . 5 ((𝜑𝑘𝑆) → (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ↔ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3516, 34orbi12d 915 . . . 4 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∨ ¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0))))
3613, 35mpbid 234 . . 3 ((𝜑𝑘𝑆) → ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
37 eqif 4483 . . 3 ((𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0) ↔ ((𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = (𝐹𝑘)) ∨ (¬ 𝑘 ∈ (𝐹 “ (ℂ ∖ {0})) ∧ (𝐹𝑘) = 0)))
3836, 37sylibr 236 . 2 ((𝜑𝑘𝑆) → (𝐹𝑘) = if(𝑘 ∈ (𝐹 “ (ℂ ∖ {0})), (𝐹𝑘), 0))
3912sselda 3946 . . 3 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → 𝑘𝑆)
404ffvelrnda 6827 . . 3 ((𝜑𝑘𝑆) → (𝐹𝑘) ∈ ℂ)
4139, 40syldan 593 . 2 ((𝜑𝑘 ∈ (𝐹 “ (ℂ ∖ {0}))) → (𝐹𝑘) ∈ ℂ)
421, 2, 3, 12, 38, 41fsumcvg3 15066 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3006  {crab 3129  Vcvv 3473  cdif 3910  ifcif 4443  {csn 4543  ccnv 5530  dom cdm 5531  cima 5534  Fun wfun 6325   Fn wfn 6326  wf 6327  cfv 6331  (class class class)co 7133   supp csupp 7808  Fincfn 8487  cc 10513  0cc0 10515   + caddc 10518  0cn0 11876  cz 11960  cuz 12222  seqcseq 13353  cli 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-fz 12877  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825
This theorem is referenced by:  eulerpartlems  31626
  Copyright terms: Public domain W3C validator