Step | Hyp | Ref
| Expression |
1 | | fsumcvg4.s |
. 2
β’ π =
(β€β₯βπ) |
2 | | fsumcvg4.m |
. 2
β’ (π β π β β€) |
3 | | fsumcvg4.f |
. 2
β’ (π β (β‘πΉ β (β β {0})) β
Fin) |
4 | | fsumcvg4.c |
. . . . 5
β’ (π β πΉ:πβΆβ) |
5 | | ffun 6672 |
. . . . 5
β’ (πΉ:πβΆβ β Fun πΉ) |
6 | | difpreima 7016 |
. . . . 5
β’ (Fun
πΉ β (β‘πΉ β (β β {0})) = ((β‘πΉ β β) β (β‘πΉ β {0}))) |
7 | 4, 5, 6 | 3syl 18 |
. . . 4
β’ (π β (β‘πΉ β (β β {0})) = ((β‘πΉ β β) β (β‘πΉ β {0}))) |
8 | | difss 4092 |
. . . 4
β’ ((β‘πΉ β β) β (β‘πΉ β {0})) β (β‘πΉ β β) |
9 | 7, 8 | eqsstrdi 3999 |
. . 3
β’ (π β (β‘πΉ β (β β {0})) β
(β‘πΉ β β)) |
10 | | fimacnv 6691 |
. . . 4
β’ (πΉ:πβΆβ β (β‘πΉ β β) = π) |
11 | 4, 10 | syl 17 |
. . 3
β’ (π β (β‘πΉ β β) = π) |
12 | 9, 11 | sseqtrd 3985 |
. 2
β’ (π β (β‘πΉ β (β β {0})) β
π) |
13 | | exmidd 895 |
. . . 4
β’ ((π β§ π β π) β (π β (β‘πΉ β (β β {0})) β¨ Β¬
π β (β‘πΉ β (β β
{0})))) |
14 | | eqid 2733 |
. . . . . . 7
β’ (πΉβπ) = (πΉβπ) |
15 | 14 | biantru 531 |
. . . . . 6
β’ (π β (β‘πΉ β (β β {0})) β
(π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = (πΉβπ))) |
16 | 15 | a1i 11 |
. . . . 5
β’ ((π β§ π β π) β (π β (β‘πΉ β (β β {0})) β
(π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = (πΉβπ)))) |
17 | 1 | fvexi 6857 |
. . . . . . . . . . . . . 14
β’ π β V |
18 | 17 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β π β V) |
19 | | 0nn0 12433 |
. . . . . . . . . . . . . 14
β’ 0 β
β0 |
20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β 0 β
β0) |
21 | | eqid 2733 |
. . . . . . . . . . . . . 14
β’ (β
β {0}) = (β β {0}) |
22 | 21 | ffs2 31692 |
. . . . . . . . . . . . 13
β’ ((π β V β§ 0 β
β0 β§ πΉ:πβΆβ) β (πΉ supp 0) = (β‘πΉ β (β β
{0}))) |
23 | 18, 20, 4, 22 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ (π β (πΉ supp 0) = (β‘πΉ β (β β
{0}))) |
24 | 4 | ffnd 6670 |
. . . . . . . . . . . . 13
β’ (π β πΉ Fn π) |
25 | | suppvalfn 8101 |
. . . . . . . . . . . . 13
β’ ((πΉ Fn π β§ π β V β§ 0 β
β0) β (πΉ supp 0) = {π β π β£ (πΉβπ) β 0}) |
26 | 24, 18, 20, 25 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ (π β (πΉ supp 0) = {π β π β£ (πΉβπ) β 0}) |
27 | 23, 26 | eqtr3d 2775 |
. . . . . . . . . . 11
β’ (π β (β‘πΉ β (β β {0})) = {π β π β£ (πΉβπ) β 0}) |
28 | 27 | eleq2d 2820 |
. . . . . . . . . 10
β’ (π β (π β (β‘πΉ β (β β {0})) β π β {π β π β£ (πΉβπ) β 0})) |
29 | | rabid 3426 |
. . . . . . . . . 10
β’ (π β {π β π β£ (πΉβπ) β 0} β (π β π β§ (πΉβπ) β 0)) |
30 | 28, 29 | bitrdi 287 |
. . . . . . . . 9
β’ (π β (π β (β‘πΉ β (β β {0})) β
(π β π β§ (πΉβπ) β 0))) |
31 | 30 | baibd 541 |
. . . . . . . 8
β’ ((π β§ π β π) β (π β (β‘πΉ β (β β {0})) β
(πΉβπ) β 0)) |
32 | 31 | necon2bbid 2984 |
. . . . . . 7
β’ ((π β§ π β π) β ((πΉβπ) = 0 β Β¬ π β (β‘πΉ β (β β
{0})))) |
33 | 32 | biimprd 248 |
. . . . . 6
β’ ((π β§ π β π) β (Β¬ π β (β‘πΉ β (β β {0})) β
(πΉβπ) = 0)) |
34 | 33 | pm4.71d 563 |
. . . . 5
β’ ((π β§ π β π) β (Β¬ π β (β‘πΉ β (β β {0})) β
(Β¬ π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = 0))) |
35 | 16, 34 | orbi12d 918 |
. . . 4
β’ ((π β§ π β π) β ((π β (β‘πΉ β (β β {0})) β¨ Β¬
π β (β‘πΉ β (β β {0}))) β
((π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = (πΉβπ)) β¨ (Β¬ π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = 0)))) |
36 | 13, 35 | mpbid 231 |
. . 3
β’ ((π β§ π β π) β ((π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = (πΉβπ)) β¨ (Β¬ π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = 0))) |
37 | | eqif 4528 |
. . 3
β’ ((πΉβπ) = if(π β (β‘πΉ β (β β {0})), (πΉβπ), 0) β ((π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = (πΉβπ)) β¨ (Β¬ π β (β‘πΉ β (β β {0})) β§ (πΉβπ) = 0))) |
38 | 36, 37 | sylibr 233 |
. 2
β’ ((π β§ π β π) β (πΉβπ) = if(π β (β‘πΉ β (β β {0})), (πΉβπ), 0)) |
39 | 12 | sselda 3945 |
. . 3
β’ ((π β§ π β (β‘πΉ β (β β {0}))) β
π β π) |
40 | 4 | ffvelcdmda 7036 |
. . 3
β’ ((π β§ π β π) β (πΉβπ) β β) |
41 | 39, 40 | syldan 592 |
. 2
β’ ((π β§ π β (β‘πΉ β (β β {0}))) β
(πΉβπ) β β) |
42 | 1, 2, 3, 12, 38, 41 | fsumcvg3 15619 |
1
β’ (π β seqπ( + , πΉ) β dom β ) |