Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashxpe Structured version   Visualization version   GIF version

Theorem hashxpe 32816
Description: The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp 14469 valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023.)
Assertion
Ref Expression
hashxpe ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))

Proof of Theorem hashxpe
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
2 hashxp 14469 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
31, 2syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
4 nn0ssre 12527 . . . . . . 7 0 ⊆ ℝ
5 hashcl 14391 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
64, 5sselid 3992 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
7 hashcl 14391 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
84, 7sselid 3992 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
96, 8anim12i 613 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
101, 9syl 17 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
11 rexmul 13309 . . . 4 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
1210, 11syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
133, 12eqtr4d 2777 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
14 simpr 484 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → 𝐵 = ∅)
1514xpeq2d 5718 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = (𝐴 × ∅))
16 xp0 6179 . . . . . . . . 9 (𝐴 × ∅) = ∅
1715, 16eqtrdi 2790 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
1817fveq2d 6910 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
19 hash0 14402 . . . . . . 7 (♯‘∅) = 0
2018, 19eqtrdi 2790 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
21 simpl 482 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
22 hashinf 14370 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2321, 22sylan 580 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2423adantr 480 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐴) = +∞)
2514fveq2d 6910 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = (♯‘∅))
2625, 19eqtrdi 2790 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = 0)
2724, 26oveq12d 7448 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e 0))
28 pnfxr 11312 . . . . . . . 8 +∞ ∈ ℝ*
29 xmul01 13305 . . . . . . . 8 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
3028, 29ax-mp 5 . . . . . . 7 (+∞ ·e 0) = 0
3127, 30eqtrdi 2790 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
3220, 31eqtr4d 2777 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
33 simpr 484 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
3433ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵𝑊)
35 hashxrcl 14392 . . . . . . . 8 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3634, 35syl 17 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℝ*)
37 hashgt0 14423 . . . . . . . 8 ((𝐵𝑊𝐵 ≠ ∅) → 0 < (♯‘𝐵))
3834, 37sylancom 588 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 0 < (♯‘𝐵))
39 xmulpnf2 13313 . . . . . . 7 (((♯‘𝐵) ∈ ℝ* ∧ 0 < (♯‘𝐵)) → (+∞ ·e (♯‘𝐵)) = +∞)
4036, 38, 39syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (+∞ ·e (♯‘𝐵)) = +∞)
4123adantr 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐴) = +∞)
4241oveq1d 7445 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e (♯‘𝐵)))
4321ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴𝑉)
4443, 34xpexd 7769 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
45 simplr 769 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ 𝐴 ∈ Fin)
46 0fi 9080 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2826 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 258 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
4948necon3bi 2964 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
5045, 49syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴 ≠ ∅)
51 simpr 484 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
52 ioran 985 . . . . . . . . . . 11 (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
53 xpeq0 6181 . . . . . . . . . . . 12 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
5453necon3abii 2984 . . . . . . . . . . 11 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
55 df-ne 2938 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
56 df-ne 2938 . . . . . . . . . . . 12 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
5755, 56anbi12i 628 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
5852, 54, 573bitr4i 303 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
5958biimpri 228 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6050, 51, 59syl2anc 584 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6145intnanrd 489 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
62 pm4.61 404 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
63 xpfir 9297 . . . . . . . . . . 11 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
6463ex 412 . . . . . . . . . 10 ((𝐴 × 𝐵) ∈ Fin → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
6564con3i 154 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6662, 65sylbir 235 . . . . . . . 8 (((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6760, 61, 66syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
68 hashinf 14370 . . . . . . 7 (((𝐴 × 𝐵) ∈ V ∧ ¬ (𝐴 × 𝐵) ∈ Fin) → (♯‘(𝐴 × 𝐵)) = +∞)
6944, 67, 68syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
7040, 42, 693eqtr4rd 2785 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
71 exmidne 2947 . . . . . 6 (𝐵 = ∅ ∨ 𝐵 ≠ ∅)
7271a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = ∅ ∨ 𝐵 ≠ ∅))
7332, 70, 72mpjaodan 960 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
7473adantlr 715 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
75 simpr 484 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
7675xpeq1d 5717 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = (∅ × 𝐵))
77 0xp 5786 . . . . . . . . 9 (∅ × 𝐵) = ∅
7876, 77eqtrdi 2790 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = ∅)
7978fveq2d 6910 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
8079, 19eqtrdi 2790 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
8175fveq2d 6910 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
8281, 19eqtrdi 2790 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
83 hashinf 14370 . . . . . . . . . 10 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8433, 83sylan 580 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8584adantr 480 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐵) = +∞)
8682, 85oveq12d 7448 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (0 ·e +∞))
87 xmul02 13306 . . . . . . . 8 (+∞ ∈ ℝ* → (0 ·e +∞) = 0)
8828, 87ax-mp 5 . . . . . . 7 (0 ·e +∞) = 0
8986, 88eqtrdi 2790 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
9080, 89eqtr4d 2777 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
91 hashxrcl 14392 . . . . . . . 8 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
9291ad3antrrr 730 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℝ*)
93 hashgt0 14423 . . . . . . . 8 ((𝐴𝑉𝐴 ≠ ∅) → 0 < (♯‘𝐴))
9493ad4ant14 752 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴))
95 xmulpnf1 13312 . . . . . . 7 (((♯‘𝐴) ∈ ℝ* ∧ 0 < (♯‘𝐴)) → ((♯‘𝐴) ·e +∞) = +∞)
9692, 94, 95syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e +∞) = +∞)
9784adantr 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐵) = +∞)
9897oveq2d 7446 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) ·e +∞))
9921ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝑉)
10033ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵𝑊)
10199, 100xpexd 7769 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
102 simpr 484 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
103 simplr 769 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ 𝐵 ∈ Fin)
104 eleq1 2826 . . . . . . . . . . . 12 (𝐵 = ∅ → (𝐵 ∈ Fin ↔ ∅ ∈ Fin))
10546, 104mpbiri 258 . . . . . . . . . . 11 (𝐵 = ∅ → 𝐵 ∈ Fin)
106105necon3bi 2964 . . . . . . . . . 10 𝐵 ∈ Fin → 𝐵 ≠ ∅)
107103, 106syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅)
108102, 107, 59syl2anc 584 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
109103intnand 488 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
110108, 109, 66syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
111101, 110, 68syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
11296, 98, 1113eqtr4rd 2785 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
113 exmidne 2947 . . . . . 6 (𝐴 = ∅ ∨ 𝐴 ≠ ∅)
114113a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅))
11590, 112, 114mpjaodan 960 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
116115adantlr 715 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
117 simpr 484 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
118 ianor 983 . . . 4 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
119117, 118sylib 218 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
12074, 116, 119mpjaodan 960 . 2 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
121 exmidd 895 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∨ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
12213, 120, 121mpjaodan 960 1 ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  c0 4338   class class class wbr 5147   × cxp 5686  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  0cc0 11152   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  0cn0 12523   ·e cxmu 13150  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-xmul 13153  df-fz 13544  df-hash 14366
This theorem is referenced by:  fedgmul  33658
  Copyright terms: Public domain W3C validator