Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashxpe Structured version   Visualization version   GIF version

Theorem hashxpe 30847
Description: The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp 14001 valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023.)
Assertion
Ref Expression
hashxpe ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))

Proof of Theorem hashxpe
StepHypRef Expression
1 simpr 488 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
2 hashxp 14001 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
31, 2syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
4 nn0ssre 12094 . . . . . . 7 0 ⊆ ℝ
5 hashcl 13923 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
64, 5sseldi 3899 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
7 hashcl 13923 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
84, 7sseldi 3899 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
96, 8anim12i 616 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
101, 9syl 17 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
11 rexmul 12861 . . . 4 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
1210, 11syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
133, 12eqtr4d 2780 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
14 simpr 488 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → 𝐵 = ∅)
1514xpeq2d 5581 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = (𝐴 × ∅))
16 xp0 6021 . . . . . . . . 9 (𝐴 × ∅) = ∅
1715, 16eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
1817fveq2d 6721 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
19 hash0 13934 . . . . . . 7 (♯‘∅) = 0
2018, 19eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
21 simpl 486 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
22 hashinf 13901 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2321, 22sylan 583 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2423adantr 484 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐴) = +∞)
2514fveq2d 6721 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = (♯‘∅))
2625, 19eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = 0)
2724, 26oveq12d 7231 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e 0))
28 pnfxr 10887 . . . . . . . 8 +∞ ∈ ℝ*
29 xmul01 12857 . . . . . . . 8 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
3028, 29ax-mp 5 . . . . . . 7 (+∞ ·e 0) = 0
3127, 30eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
3220, 31eqtr4d 2780 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
33 simpr 488 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
3433ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵𝑊)
35 hashxrcl 13924 . . . . . . . 8 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3634, 35syl 17 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℝ*)
37 hashgt0 13955 . . . . . . . 8 ((𝐵𝑊𝐵 ≠ ∅) → 0 < (♯‘𝐵))
3834, 37sylancom 591 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 0 < (♯‘𝐵))
39 xmulpnf2 12865 . . . . . . 7 (((♯‘𝐵) ∈ ℝ* ∧ 0 < (♯‘𝐵)) → (+∞ ·e (♯‘𝐵)) = +∞)
4036, 38, 39syl2anc 587 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (+∞ ·e (♯‘𝐵)) = +∞)
4123adantr 484 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐴) = +∞)
4241oveq1d 7228 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e (♯‘𝐵)))
4321ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴𝑉)
4443, 34xpexd 7536 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
45 simplr 769 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ 𝐴 ∈ Fin)
46 0fin 8849 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2825 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 261 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
4948necon3bi 2967 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
5045, 49syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴 ≠ ∅)
51 simpr 488 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
52 ioran 984 . . . . . . . . . . 11 (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
53 xpeq0 6023 . . . . . . . . . . . 12 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
5453necon3abii 2987 . . . . . . . . . . 11 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
55 df-ne 2941 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
56 df-ne 2941 . . . . . . . . . . . 12 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
5755, 56anbi12i 630 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
5852, 54, 573bitr4i 306 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
5958biimpri 231 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6050, 51, 59syl2anc 587 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6145intnanrd 493 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
62 pm4.61 408 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
63 xpfir 8897 . . . . . . . . . . 11 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
6463ex 416 . . . . . . . . . 10 ((𝐴 × 𝐵) ∈ Fin → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
6564con3i 157 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6662, 65sylbir 238 . . . . . . . 8 (((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6760, 61, 66syl2anc 587 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
68 hashinf 13901 . . . . . . 7 (((𝐴 × 𝐵) ∈ V ∧ ¬ (𝐴 × 𝐵) ∈ Fin) → (♯‘(𝐴 × 𝐵)) = +∞)
6944, 67, 68syl2anc 587 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
7040, 42, 693eqtr4rd 2788 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
71 exmidne 2950 . . . . . 6 (𝐵 = ∅ ∨ 𝐵 ≠ ∅)
7271a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = ∅ ∨ 𝐵 ≠ ∅))
7332, 70, 72mpjaodan 959 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
7473adantlr 715 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
75 simpr 488 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
7675xpeq1d 5580 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = (∅ × 𝐵))
77 0xp 5646 . . . . . . . . 9 (∅ × 𝐵) = ∅
7876, 77eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = ∅)
7978fveq2d 6721 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
8079, 19eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
8175fveq2d 6721 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
8281, 19eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
83 hashinf 13901 . . . . . . . . . 10 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8433, 83sylan 583 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8584adantr 484 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐵) = +∞)
8682, 85oveq12d 7231 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (0 ·e +∞))
87 xmul02 12858 . . . . . . . 8 (+∞ ∈ ℝ* → (0 ·e +∞) = 0)
8828, 87ax-mp 5 . . . . . . 7 (0 ·e +∞) = 0
8986, 88eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
9080, 89eqtr4d 2780 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
91 hashxrcl 13924 . . . . . . . 8 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
9291ad3antrrr 730 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℝ*)
93 hashgt0 13955 . . . . . . . 8 ((𝐴𝑉𝐴 ≠ ∅) → 0 < (♯‘𝐴))
9493ad4ant14 752 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴))
95 xmulpnf1 12864 . . . . . . 7 (((♯‘𝐴) ∈ ℝ* ∧ 0 < (♯‘𝐴)) → ((♯‘𝐴) ·e +∞) = +∞)
9692, 94, 95syl2anc 587 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e +∞) = +∞)
9784adantr 484 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐵) = +∞)
9897oveq2d 7229 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) ·e +∞))
9921ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝑉)
10033ad2antrr 726 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵𝑊)
10199, 100xpexd 7536 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
102 simpr 488 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
103 simplr 769 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ 𝐵 ∈ Fin)
104 eleq1 2825 . . . . . . . . . . . 12 (𝐵 = ∅ → (𝐵 ∈ Fin ↔ ∅ ∈ Fin))
10546, 104mpbiri 261 . . . . . . . . . . 11 (𝐵 = ∅ → 𝐵 ∈ Fin)
106105necon3bi 2967 . . . . . . . . . 10 𝐵 ∈ Fin → 𝐵 ≠ ∅)
107103, 106syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅)
108102, 107, 59syl2anc 587 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
109103intnand 492 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
110108, 109, 66syl2anc 587 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
111101, 110, 68syl2anc 587 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
11296, 98, 1113eqtr4rd 2788 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
113 exmidne 2950 . . . . . 6 (𝐴 = ∅ ∨ 𝐴 ≠ ∅)
114113a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅))
11590, 112, 114mpjaodan 959 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
116115adantlr 715 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
117 simpr 488 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
118 ianor 982 . . . 4 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
119117, 118sylib 221 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
12074, 116, 119mpjaodan 959 . 2 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
121 exmidd 896 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∨ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
12213, 120, 121mpjaodan 959 1 ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  c0 4237   class class class wbr 5053   × cxp 5549  cfv 6380  (class class class)co 7213  Fincfn 8626  cr 10728  0cc0 10729   · cmul 10734  +∞cpnf 10864  *cxr 10866   < clt 10867  0cn0 12090   ·e cxmu 12703  chash 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-xmul 12706  df-fz 13096  df-hash 13897
This theorem is referenced by:  fedgmul  31426
  Copyright terms: Public domain W3C validator