Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashxpe Structured version   Visualization version   GIF version

Theorem hashxpe 31127
Description: The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp 14149 valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023.)
Assertion
Ref Expression
hashxpe ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))

Proof of Theorem hashxpe
StepHypRef Expression
1 simpr 485 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
2 hashxp 14149 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
31, 2syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
4 nn0ssre 12237 . . . . . . 7 0 ⊆ ℝ
5 hashcl 14071 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
64, 5sselid 3919 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℝ)
7 hashcl 14071 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
84, 7sselid 3919 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℝ)
96, 8anim12i 613 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
101, 9syl 17 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
11 rexmul 13005 . . . 4 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
1210, 11syl 17 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
133, 12eqtr4d 2781 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
14 simpr 485 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → 𝐵 = ∅)
1514xpeq2d 5619 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = (𝐴 × ∅))
16 xp0 6061 . . . . . . . . 9 (𝐴 × ∅) = ∅
1715, 16eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
1817fveq2d 6778 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
19 hash0 14082 . . . . . . 7 (♯‘∅) = 0
2018, 19eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
21 simpl 483 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
22 hashinf 14049 . . . . . . . . . 10 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2321, 22sylan 580 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
2423adantr 481 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐴) = +∞)
2514fveq2d 6778 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = (♯‘∅))
2625, 19eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘𝐵) = 0)
2724, 26oveq12d 7293 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e 0))
28 pnfxr 11029 . . . . . . . 8 +∞ ∈ ℝ*
29 xmul01 13001 . . . . . . . 8 (+∞ ∈ ℝ* → (+∞ ·e 0) = 0)
3028, 29ax-mp 5 . . . . . . 7 (+∞ ·e 0) = 0
3127, 30eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
3220, 31eqtr4d 2781 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
33 simpr 485 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
3433ad2antrr 723 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵𝑊)
35 hashxrcl 14072 . . . . . . . 8 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
3634, 35syl 17 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℝ*)
37 hashgt0 14103 . . . . . . . 8 ((𝐵𝑊𝐵 ≠ ∅) → 0 < (♯‘𝐵))
3834, 37sylancom 588 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 0 < (♯‘𝐵))
39 xmulpnf2 13009 . . . . . . 7 (((♯‘𝐵) ∈ ℝ* ∧ 0 < (♯‘𝐵)) → (+∞ ·e (♯‘𝐵)) = +∞)
4036, 38, 39syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (+∞ ·e (♯‘𝐵)) = +∞)
4123adantr 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘𝐴) = +∞)
4241oveq1d 7290 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (+∞ ·e (♯‘𝐵)))
4321ad2antrr 723 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴𝑉)
4443, 34xpexd 7601 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
45 simplr 766 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ 𝐴 ∈ Fin)
46 0fin 8954 . . . . . . . . . . . 12 ∅ ∈ Fin
47 eleq1 2826 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
4846, 47mpbiri 257 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐴 ∈ Fin)
4948necon3bi 2970 . . . . . . . . . 10 𝐴 ∈ Fin → 𝐴 ≠ ∅)
5045, 49syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐴 ≠ ∅)
51 simpr 485 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
52 ioran 981 . . . . . . . . . . 11 (¬ (𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
53 xpeq0 6063 . . . . . . . . . . . 12 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
5453necon3abii 2990 . . . . . . . . . . 11 ((𝐴 × 𝐵) ≠ ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))
55 df-ne 2944 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
56 df-ne 2944 . . . . . . . . . . . 12 (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅)
5755, 56anbi12i 627 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))
5852, 54, 573bitr4i 303 . . . . . . . . . 10 ((𝐴 × 𝐵) ≠ ∅ ↔ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
5958biimpri 227 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6050, 51, 59syl2anc 584 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
6145intnanrd 490 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
62 pm4.61 405 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ↔ ((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
63 xpfir 9041 . . . . . . . . . . 11 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
6463ex 413 . . . . . . . . . 10 ((𝐴 × 𝐵) ∈ Fin → ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
6564con3i 154 . . . . . . . . 9 (¬ ((𝐴 × 𝐵) ≠ ∅ → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6662, 65sylbir 234 . . . . . . . 8 (((𝐴 × 𝐵) ≠ ∅ ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 × 𝐵) ∈ Fin)
6760, 61, 66syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
68 hashinf 14049 . . . . . . 7 (((𝐴 × 𝐵) ∈ V ∧ ¬ (𝐴 × 𝐵) ∈ Fin) → (♯‘(𝐴 × 𝐵)) = +∞)
6944, 67, 68syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
7040, 42, 693eqtr4rd 2789 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
71 exmidne 2953 . . . . . 6 (𝐵 = ∅ ∨ 𝐵 ≠ ∅)
7271a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = ∅ ∨ 𝐵 ≠ ∅))
7332, 70, 72mpjaodan 956 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
7473adantlr 712 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐴 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
75 simpr 485 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
7675xpeq1d 5618 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = (∅ × 𝐵))
77 0xp 5685 . . . . . . . . 9 (∅ × 𝐵) = ∅
7876, 77eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = ∅)
7978fveq2d 6778 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = (♯‘∅))
8079, 19eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = 0)
8175fveq2d 6778 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = (♯‘∅))
8281, 19eqtrdi 2794 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐴) = 0)
83 hashinf 14049 . . . . . . . . . 10 ((𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8433, 83sylan 580 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
8584adantr 481 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘𝐵) = +∞)
8682, 85oveq12d 7293 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = (0 ·e +∞))
87 xmul02 13002 . . . . . . . 8 (+∞ ∈ ℝ* → (0 ·e +∞) = 0)
8828, 87ax-mp 5 . . . . . . 7 (0 ·e +∞) = 0
8986, 88eqtrdi 2794 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = 0)
9080, 89eqtr4d 2781 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 = ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
91 hashxrcl 14072 . . . . . . . 8 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
9291ad3antrrr 727 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℝ*)
93 hashgt0 14103 . . . . . . . 8 ((𝐴𝑉𝐴 ≠ ∅) → 0 < (♯‘𝐴))
9493ad4ant14 749 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴))
95 xmulpnf1 13008 . . . . . . 7 (((♯‘𝐴) ∈ ℝ* ∧ 0 < (♯‘𝐴)) → ((♯‘𝐴) ·e +∞) = +∞)
9692, 94, 95syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e +∞) = +∞)
9784adantr 481 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘𝐵) = +∞)
9897oveq2d 7291 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ((♯‘𝐴) ·e (♯‘𝐵)) = ((♯‘𝐴) ·e +∞))
9921ad2antrr 723 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴𝑉)
10033ad2antrr 723 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵𝑊)
10199, 100xpexd 7601 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ∈ V)
102 simpr 485 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
103 simplr 766 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ 𝐵 ∈ Fin)
104 eleq1 2826 . . . . . . . . . . . 12 (𝐵 = ∅ → (𝐵 ∈ Fin ↔ ∅ ∈ Fin))
10546, 104mpbiri 257 . . . . . . . . . . 11 (𝐵 = ∅ → 𝐵 ∈ Fin)
106105necon3bi 2970 . . . . . . . . . 10 𝐵 ∈ Fin → 𝐵 ≠ ∅)
107103, 106syl 17 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐵 ≠ ∅)
108102, 107, 59syl2anc 584 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
109103intnand 489 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
110108, 109, 66syl2anc 584 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ Fin)
111101, 110, 68syl2anc 584 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = +∞)
11296, 98, 1113eqtr4rd 2789 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) ∧ 𝐴 ≠ ∅) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
113 exmidne 2953 . . . . . 6 (𝐴 = ∅ ∨ 𝐴 ≠ ∅)
114113a1i 11 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (𝐴 = ∅ ∨ 𝐴 ≠ ∅))
11590, 112, 114mpjaodan 956 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
116115adantlr 712 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) ∧ ¬ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
117 simpr 485 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
118 ianor 979 . . . 4 (¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ↔ (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
119117, 118sylib 217 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin))
12074, 116, 119mpjaodan 956 . 2 (((𝐴𝑉𝐵𝑊) ∧ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
121 exmidd 893 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∨ ¬ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)))
12213, 120, 121mpjaodan 956 1 ((𝐴𝑉𝐵𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  Fincfn 8733  cr 10870  0cc0 10871   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  0cn0 12233   ·e cxmu 12847  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xmul 12850  df-fz 13240  df-hash 14045
This theorem is referenced by:  fedgmul  31712
  Copyright terms: Public domain W3C validator