Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
2 | | aks4d1p5.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
3 | | aks4d1p5.2 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
4 | | aks4d1p5.3 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (⌈‘((2
logb 𝑁)↑5)) |
5 | | aks4d1p5.4 |
. . . . . . . . . . . . . 14
⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) |
6 | 2, 3, 4, 5 | aks4d1p4 39993 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
7 | 6 | simpld 498 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ (1...𝐵)) |
8 | | elfznn 13189 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℕ) |
10 | 9 | nnred 11893 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ ℝ) |
11 | | eluzelz 12496 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
12 | 2, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | | 0red 10884 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℝ) |
14 | | 3re 11958 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 3 ∈
ℝ) |
16 | 12 | zred 12330 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
17 | | 3pos 11983 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
3 |
18 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < 3) |
19 | | eluzle 12499 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
20 | 2, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 3 ≤ 𝑁) |
21 | 13, 15, 16, 18, 20 | ltletrd 11040 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
22 | 12, 21 | jca 515 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
23 | | elnnz 12234 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
24 | 22, 23 | sylibr 237 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
25 | | gcdnncl 16117 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ) |
26 | 24, 9, 25 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ) |
27 | 26 | nnred 11893 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ) |
28 | 26 | nnne0d 11928 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 gcd 𝑅) ≠ 0) |
29 | 10, 27, 28 | redivcld 11708 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ) |
30 | 29 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ) |
31 | 10 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ) |
32 | 30, 31 | ltnled 11027 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))) |
33 | 32 | biimprd 251 |
. . . . . 6
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)) |
34 | 33 | imp 410 |
. . . . 5
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅) |
35 | 5 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < )) |
36 | | ssrab2 4010 |
. . . . . . . . . . . 12
⊢ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵) |
37 | 36 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵)) |
38 | | elfznn 13189 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ) |
39 | 38 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ) |
40 | 39 | nnred 11893 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ) |
41 | 40 | ex 416 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ)) |
42 | 41 | ssrdv 3924 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...𝐵) ⊆ ℝ) |
43 | 37, 42 | sstrd 3928 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ) |
44 | 43 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ) |
45 | | fzfid 13596 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝐵) ∈ Fin) |
46 | 45, 37 | ssfid 8946 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin) |
47 | 46 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin) |
48 | 2, 3, 4 | aks4d1p3 39992 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |
49 | | rabn0 4317 |
. . . . . . . . . . . 12
⊢ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |
50 | 48, 49 | sylibr 237 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅) |
51 | 50 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅) |
52 | | fiminre 11827 |
. . . . . . . . . 10
⊢ (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}𝑥 ≤ 𝑦) |
53 | 44, 47, 51, 52 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}𝑥 ≤ 𝑦) |
54 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟 ∥ 𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)) |
55 | 54 | notbid 321 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟 ∥ 𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)) |
56 | | 1zzd 12256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ) |
57 | 4 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
58 | | 2re 11952 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ∈
ℝ) |
60 | | 2pos 11981 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
2 |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 2) |
62 | | 1red 10882 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℝ) |
63 | | 1lt2 12049 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
2 |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 < 2) |
65 | 62, 64 | ltned 11016 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≠ 2) |
66 | 65 | necomd 2999 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ≠ 1) |
67 | 59, 61, 16, 21, 66 | relogbcld 39887 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
68 | | 5nn0 12158 |
. . . . . . . . . . . . . . . 16
⊢ 5 ∈
ℕ0 |
69 | 68 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 5 ∈
ℕ0) |
70 | 67, 69 | reexpcld 13784 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈
ℝ) |
71 | | ceilcl 13465 |
. . . . . . . . . . . . . 14
⊢ (((2
logb 𝑁)↑5)
∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℤ) |
73 | 57, 72 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℤ) |
74 | 73 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ) |
75 | 24 | nnzd 12329 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) |
76 | | divgcdnnr 16126 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ) |
77 | 9, 75, 76 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ) |
78 | 77 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ) |
79 | 78 | nnzd 12329 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ) |
80 | 78 | nnge1d 11926 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
81 | 74 | zred 12330 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ) |
82 | 9 | nnrpd 12674 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
83 | 82 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈
ℝ+) |
84 | 26 | nnrpd 12674 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 gcd 𝑅) ∈
ℝ+) |
85 | 84 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈
ℝ+) |
86 | 31 | recnd 10909 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ) |
87 | 83 | rpne0d 12681 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0) |
88 | 86, 87 | dividd 11654 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1) |
89 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅)) |
90 | 88, 89 | eqbrtrd 5092 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅)) |
91 | 31, 83, 85, 90 | ltdiv23d 12743 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅) |
92 | 30, 31, 91 | ltled 11028 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅) |
93 | | elfzle2 13164 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (1...𝐵) → 𝑅 ≤ 𝐵) |
94 | 7, 93 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ≤ 𝐵) |
95 | 94 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ 𝐵) |
96 | 30, 31, 81, 92, 95 | letrd 11037 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵) |
97 | 56, 74, 79, 80, 96 | elfzd 13151 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵)) |
98 | | aks4d1p5.5 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) |
99 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) |
100 | | exmidd 896 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)) |
101 | 98, 99, 100 | mpjaodan 959 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) |
102 | 55, 97, 101 | elrabd 3620 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
103 | | lbinfle 11835 |
. . . . . . . . 9
⊢ (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}𝑥 ≤ 𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅))) |
104 | 44, 53, 102, 103 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅))) |
105 | 35, 104 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
106 | 31, 30 | lenltd 11026 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)) |
107 | 105, 106 | mpbid 235 |
. . . . . 6
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅) |
108 | 107 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅) |
109 | 34, 108 | pm2.21dd 198 |
. . . 4
⊢ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
110 | 1, 109 | pm2.61dan 813 |
. . 3
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
111 | 82 | rpred 12676 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ℝ) |
112 | 111 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ) |
113 | 91, 107 | pm2.21dd 198 |
. . . . . 6
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ) |
114 | 113 | nnrpd 12674 |
. . . . 5
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈
ℝ+) |
115 | 112 | recnd 10909 |
. . . . . . 7
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ) |
116 | 115, 87 | dividd 11654 |
. . . . . 6
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1) |
117 | 116, 89 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅)) |
118 | 112, 83, 114, 117 | ltdiv23d 12743 |
. . . 4
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅) |
119 | 77 | nnred 11893 |
. . . . . 6
⊢ (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ) |
120 | 119, 111 | ltnled 11027 |
. . . . 5
⊢ (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))) |
121 | 120 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))) |
122 | 118, 121 | mpbid 235 |
. . 3
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) |
123 | 110, 122 | pm2.21dd 198 |
. 2
⊢ ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1) |
124 | | simpr 488 |
. . 3
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1) |
125 | 26 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ) |
126 | 125 | nnred 11893 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ) |
127 | 126 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ (𝑁 gcd 𝑅) ∈
ℝ) |
128 | 58 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ 2 ∈ ℝ) |
129 | | 1red 10882 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ 1 ∈ ℝ) |
130 | 27, 62 | lenltd 11026 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅))) |
131 | 130 | biimprd 251 |
. . . . . . . 8
⊢ (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1)) |
132 | 131 | imp 410 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1) |
133 | 132 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ (𝑁 gcd 𝑅) ≤ 1) |
134 | 63 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ 1 < 2) |
135 | 127, 129,
128, 133, 134 | lelttrd 11038 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ (𝑁 gcd 𝑅) < 2) |
136 | | eluzle 12499 |
. . . . . 6
⊢ ((𝑁 gcd 𝑅) ∈ (ℤ≥‘2)
→ 2 ≤ (𝑁 gcd 𝑅)) |
137 | 136 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ 2 ≤ (𝑁 gcd 𝑅)) |
138 | 127, 128,
127, 135, 137 | ltletrd 11040 |
. . . 4
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅)) |
139 | 127 | ltnrd 11014 |
. . . 4
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅)) |
140 | 138, 139 | pm2.21dd 198 |
. . 3
⊢ (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ≥‘2))
→ (𝑁 gcd 𝑅) = 1) |
141 | | elnn1uz2 12569 |
. . . 4
⊢ ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈
(ℤ≥‘2))) |
142 | 125, 141 | sylib 221 |
. . 3
⊢ ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈
(ℤ≥‘2))) |
143 | 124, 140,
142 | mpjaodan 959 |
. 2
⊢ ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1) |
144 | 123, 143 | pm2.61dan 813 |
1
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |