Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p5 42068
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p5.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p5.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p5.5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
Assertion
Ref Expression
aks4d1p5 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)

Proof of Theorem aks4d1p5
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
2 aks4d1p5.1 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p5.2 . . . . . . . . . . . . . 14 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p5.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p5.4 . . . . . . . . . . . . . 14 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 42067 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13514 . . . . . . . . . . . 12 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
109nnred 12201 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
11 eluzelz 12803 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
122, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
13 0red 11177 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
14 3re 12266 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
1612zred 12638 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
17 3pos 12291 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12806 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11334 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12539 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
25 gcdnncl 16477 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ)
2624, 9, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ)
2726nnred 12201 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ)
2826nnne0d 12236 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ≠ 0)
2910, 27, 28redivcld 12010 . . . . . . . . 9 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3029adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3110adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
3230, 31ltnled 11321 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
3332biimprd 248 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
3433imp 406 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
355a1i 11 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
36 ssrab2 4043 . . . . . . . . . . . 12 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
3736a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
38 elfznn 13514 . . . . . . . . . . . . . . 15 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
4039nnred 12201 . . . . . . . . . . . . 13 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
4241ssrdv 3952 . . . . . . . . . . 11 (𝜑 → (1...𝐵) ⊆ ℝ)
4337, 42sstrd 3957 . . . . . . . . . 10 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
4443adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
45 fzfid 13938 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
4645, 37ssfid 9212 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
4746adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
482, 3, 4aks4d1p3 42066 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
49 rabn0 4352 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
5048, 49sylibr 234 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
5150adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
52 fiminre 12130 . . . . . . . . . 10 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
5344, 47, 51, 52syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
54 breq1 5110 . . . . . . . . . . 11 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
5554notbid 318 . . . . . . . . . 10 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
56 1zzd 12564 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ)
574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
58 2re 12260 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
60 2pos 12289 . . . . . . . . . . . . . . . . 17 0 < 2
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
62 1red 11175 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
63 1lt2 12352 . . . . . . . . . . . . . . . . . . 19 1 < 2
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
6562, 64ltned 11310 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
6665necomd 2980 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
6759, 61, 16, 21, 66relogbcld 41961 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
68 5nn0 12462 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
6968a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
7067, 69reexpcld 14128 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
71 ceilcl 13804 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7270, 71syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7357, 72eqeltrd 2828 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
7473adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ)
7524nnzd 12556 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
76 divgcdnnr 16486 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
779, 75, 76syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7877adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7978nnzd 12556 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ)
8078nnge1d 12234 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅)))
8174zred 12638 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ)
829nnrpd 12993 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
8382adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
8426nnrpd 12993 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
8631recnd 11202 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
8783rpne0d 13000 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0)
8886, 87dividd 11956 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
89 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
9088, 89eqbrtrd 5129 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
9131, 83, 85, 90ltdiv23d 13062 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
9230, 31, 91ltled 11322 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅)
93 elfzle2 13489 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
947, 93syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐵)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
9630, 31, 81, 92, 95letrd 11331 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵)
9756, 74, 79, 80, 96elfzd 13476 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵))
98 aks4d1p5.5 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
99 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
100 exmidd 895 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
10198, 99, 100mpjaodan 960 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
10255, 97, 101elrabd 3661 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
103 lbinfle 12138 . . . . . . . . 9 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10444, 53, 102, 103syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10535, 104eqbrtrd 5129 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
10631, 30lenltd 11320 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
107105, 106mpbid 232 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
108107adantr 480 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
10934, 108pm2.21dd 195 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
1101, 109pm2.61dan 812 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
11182rpred 12995 . . . . . 6 (𝜑𝑅 ∈ ℝ)
112111adantr 480 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
11391, 107pm2.21dd 195 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
114113nnrpd 12993 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
115112recnd 11202 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
116115, 87dividd 11956 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
117116, 89eqbrtrd 5129 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
118112, 83, 114, 117ltdiv23d 13062 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
11977nnred 12201 . . . . . 6 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
120119, 111ltnled 11321 . . . . 5 (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
121120adantr 480 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
122118, 121mpbid 232 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
123110, 122pm2.21dd 195 . 2 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
124 simpr 484 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1)
12526adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
126125nnred 12201 . . . . . 6 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ)
127126adantr 480 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ∈ ℝ)
12858a1i 11 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ∈ ℝ)
129 1red 11175 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 ∈ ℝ)
13027, 62lenltd 11320 . . . . . . . . 9 (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅)))
131130biimprd 248 . . . . . . . 8 (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1))
132131imp 406 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1)
133132adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ≤ 1)
13463a1i 11 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 < 2)
135127, 129, 128, 133, 134lelttrd 11332 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < 2)
136 eluzle 12806 . . . . . 6 ((𝑁 gcd 𝑅) ∈ (ℤ‘2) → 2 ≤ (𝑁 gcd 𝑅))
137136adantl 481 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ≤ (𝑁 gcd 𝑅))
138127, 128, 127, 135, 137ltletrd 11334 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
139127ltnrd 11308 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
140138, 139pm2.21dd 195 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) = 1)
141 elnn1uz2 12884 . . . 4 ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
142125, 141sylib 218 . . 3 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
143124, 140, 142mpjaodan 960 . 2 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
144123, 143pm2.61dan 812 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  5c5 12244  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cfl 13752  cceil 13753  cexp 14026  cprod 15869  cdvds 16222   gcd cgcd 16464   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-lcm 16560  df-lcmf 16561  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  aks4d1p8  42075
  Copyright terms: Public domain W3C validator