Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p5 40088
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p5.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p5.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p5.5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
Assertion
Ref Expression
aks4d1p5 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)

Proof of Theorem aks4d1p5
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
2 aks4d1p5.1 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p5.2 . . . . . . . . . . . . . 14 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p5.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p5.4 . . . . . . . . . . . . . 14 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 40087 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 495 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13285 . . . . . . . . . . . 12 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
109nnred 11988 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
11 eluzelz 12592 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
122, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
13 0red 10978 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
14 3re 12053 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
1612zred 12426 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
17 3pos 12078 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12595 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11135 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
2212, 21jca 512 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12329 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 233 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
25 gcdnncl 16214 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ)
2624, 9, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ)
2726nnred 11988 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ)
2826nnne0d 12023 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ≠ 0)
2910, 27, 28redivcld 11803 . . . . . . . . 9 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3029adantr 481 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3110adantr 481 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
3230, 31ltnled 11122 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
3332biimprd 247 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
3433imp 407 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
355a1i 11 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
36 ssrab2 4013 . . . . . . . . . . . 12 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
3736a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
38 elfznn 13285 . . . . . . . . . . . . . . 15 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
3938adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
4039nnred 11988 . . . . . . . . . . . . 13 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
4140ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
4241ssrdv 3927 . . . . . . . . . . 11 (𝜑 → (1...𝐵) ⊆ ℝ)
4337, 42sstrd 3931 . . . . . . . . . 10 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
4443adantr 481 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
45 fzfid 13693 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
4645, 37ssfid 9042 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
4746adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
482, 3, 4aks4d1p3 40086 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
49 rabn0 4319 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
5048, 49sylibr 233 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
5150adantr 481 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
52 fiminre 11922 . . . . . . . . . 10 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
5344, 47, 51, 52syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
54 breq1 5077 . . . . . . . . . . 11 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
5554notbid 318 . . . . . . . . . 10 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
56 1zzd 12351 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ)
574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
58 2re 12047 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
60 2pos 12076 . . . . . . . . . . . . . . . . 17 0 < 2
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
62 1red 10976 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
63 1lt2 12144 . . . . . . . . . . . . . . . . . . 19 1 < 2
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
6562, 64ltned 11111 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
6665necomd 2999 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
6759, 61, 16, 21, 66relogbcld 39981 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
68 5nn0 12253 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
6968a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
7067, 69reexpcld 13881 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
71 ceilcl 13562 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7270, 71syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7357, 72eqeltrd 2839 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
7473adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ)
7524nnzd 12425 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
76 divgcdnnr 16223 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
779, 75, 76syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7877adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7978nnzd 12425 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ)
8078nnge1d 12021 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅)))
8174zred 12426 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ)
829nnrpd 12770 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
8382adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
8426nnrpd 12770 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ+)
8584adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
8631recnd 11003 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
8783rpne0d 12777 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0)
8886, 87dividd 11749 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
89 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
9088, 89eqbrtrd 5096 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
9131, 83, 85, 90ltdiv23d 12839 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
9230, 31, 91ltled 11123 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅)
93 elfzle2 13260 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
947, 93syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐵)
9594adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
9630, 31, 81, 92, 95letrd 11132 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵)
9756, 74, 79, 80, 96elfzd 13247 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵))
98 aks4d1p5.5 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
99 simpr 485 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
100 exmidd 893 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
10198, 99, 100mpjaodan 956 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
10255, 97, 101elrabd 3626 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
103 lbinfle 11930 . . . . . . . . 9 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10444, 53, 102, 103syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10535, 104eqbrtrd 5096 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
10631, 30lenltd 11121 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
107105, 106mpbid 231 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
108107adantr 481 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
10934, 108pm2.21dd 194 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
1101, 109pm2.61dan 810 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
11182rpred 12772 . . . . . 6 (𝜑𝑅 ∈ ℝ)
112111adantr 481 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
11391, 107pm2.21dd 194 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
114113nnrpd 12770 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
115112recnd 11003 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
116115, 87dividd 11749 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
117116, 89eqbrtrd 5096 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
118112, 83, 114, 117ltdiv23d 12839 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
11977nnred 11988 . . . . . 6 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
120119, 111ltnled 11122 . . . . 5 (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
121120adantr 481 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
122118, 121mpbid 231 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
123110, 122pm2.21dd 194 . 2 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
124 simpr 485 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1)
12526adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
126125nnred 11988 . . . . . 6 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ)
127126adantr 481 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ∈ ℝ)
12858a1i 11 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ∈ ℝ)
129 1red 10976 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 ∈ ℝ)
13027, 62lenltd 11121 . . . . . . . . 9 (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅)))
131130biimprd 247 . . . . . . . 8 (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1))
132131imp 407 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1)
133132adantr 481 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ≤ 1)
13463a1i 11 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 < 2)
135127, 129, 128, 133, 134lelttrd 11133 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < 2)
136 eluzle 12595 . . . . . 6 ((𝑁 gcd 𝑅) ∈ (ℤ‘2) → 2 ≤ (𝑁 gcd 𝑅))
137136adantl 482 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ≤ (𝑁 gcd 𝑅))
138127, 128, 127, 135, 137ltletrd 11135 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
139127ltnrd 11109 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
140138, 139pm2.21dd 194 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) = 1)
141 elnn1uz2 12665 . . . 4 ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
142125, 141sylib 217 . . 3 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
143124, 140, 142mpjaodan 956 . 2 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
144123, 143pm2.61dan 810 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  5c5 12031  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  cfl 13510  cceil 13511  cexp 13782  cprod 15615  cdvds 15963   gcd cgcd 16201   logb clogb 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-lcm 16295  df-lcmf 16296  df-prm 16377  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  aks4d1p8  40095
  Copyright terms: Public domain W3C validator