Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p5 42037
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p5.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p5.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p5.5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
Assertion
Ref Expression
aks4d1p5 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)

Proof of Theorem aks4d1p5
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
2 aks4d1p5.1 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p5.2 . . . . . . . . . . . . . 14 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p5.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p5.4 . . . . . . . . . . . . . 14 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 42036 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13613 . . . . . . . . . . . 12 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
109nnred 12308 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
11 eluzelz 12913 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
122, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
13 0red 11293 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
14 3re 12373 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
1612zred 12747 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
17 3pos 12398 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12916 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11450 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12649 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 234 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
25 gcdnncl 16553 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ)
2624, 9, 25syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ)
2726nnred 12308 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ)
2826nnne0d 12343 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ≠ 0)
2910, 27, 28redivcld 12122 . . . . . . . . 9 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3029adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3110adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
3230, 31ltnled 11437 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
3332biimprd 248 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
3433imp 406 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
355a1i 11 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
36 ssrab2 4103 . . . . . . . . . . . 12 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
3736a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
38 elfznn 13613 . . . . . . . . . . . . . . 15 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
4039nnred 12308 . . . . . . . . . . . . 13 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
4241ssrdv 4014 . . . . . . . . . . 11 (𝜑 → (1...𝐵) ⊆ ℝ)
4337, 42sstrd 4019 . . . . . . . . . 10 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
4443adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
45 fzfid 14024 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
4645, 37ssfid 9329 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
4746adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
482, 3, 4aks4d1p3 42035 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
49 rabn0 4412 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
5048, 49sylibr 234 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
5150adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
52 fiminre 12242 . . . . . . . . . 10 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
5344, 47, 51, 52syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
54 breq1 5169 . . . . . . . . . . 11 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
5554notbid 318 . . . . . . . . . 10 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
56 1zzd 12674 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ)
574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
58 2re 12367 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
60 2pos 12396 . . . . . . . . . . . . . . . . 17 0 < 2
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
62 1red 11291 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
63 1lt2 12464 . . . . . . . . . . . . . . . . . . 19 1 < 2
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
6562, 64ltned 11426 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
6665necomd 3002 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
6759, 61, 16, 21, 66relogbcld 41929 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
68 5nn0 12573 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
6968a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
7067, 69reexpcld 14213 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
71 ceilcl 13893 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7270, 71syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7357, 72eqeltrd 2844 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
7473adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ)
7524nnzd 12666 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
76 divgcdnnr 16562 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
779, 75, 76syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7877adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7978nnzd 12666 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ)
8078nnge1d 12341 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅)))
8174zred 12747 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ)
829nnrpd 13097 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
8382adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
8426nnrpd 13097 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
8631recnd 11318 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
8783rpne0d 13104 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0)
8886, 87dividd 12068 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
89 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
9088, 89eqbrtrd 5188 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
9131, 83, 85, 90ltdiv23d 13166 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
9230, 31, 91ltled 11438 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅)
93 elfzle2 13588 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
947, 93syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐵)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
9630, 31, 81, 92, 95letrd 11447 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵)
9756, 74, 79, 80, 96elfzd 13575 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵))
98 aks4d1p5.5 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
99 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
100 exmidd 894 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
10198, 99, 100mpjaodan 959 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
10255, 97, 101elrabd 3710 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
103 lbinfle 12250 . . . . . . . . 9 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10444, 53, 102, 103syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10535, 104eqbrtrd 5188 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
10631, 30lenltd 11436 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
107105, 106mpbid 232 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
108107adantr 480 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
10934, 108pm2.21dd 195 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
1101, 109pm2.61dan 812 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
11182rpred 13099 . . . . . 6 (𝜑𝑅 ∈ ℝ)
112111adantr 480 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
11391, 107pm2.21dd 195 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
114113nnrpd 13097 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
115112recnd 11318 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
116115, 87dividd 12068 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
117116, 89eqbrtrd 5188 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
118112, 83, 114, 117ltdiv23d 13166 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
11977nnred 12308 . . . . . 6 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
120119, 111ltnled 11437 . . . . 5 (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
121120adantr 480 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
122118, 121mpbid 232 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
123110, 122pm2.21dd 195 . 2 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
124 simpr 484 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1)
12526adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
126125nnred 12308 . . . . . 6 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ)
127126adantr 480 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ∈ ℝ)
12858a1i 11 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ∈ ℝ)
129 1red 11291 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 ∈ ℝ)
13027, 62lenltd 11436 . . . . . . . . 9 (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅)))
131130biimprd 248 . . . . . . . 8 (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1))
132131imp 406 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1)
133132adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ≤ 1)
13463a1i 11 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 < 2)
135127, 129, 128, 133, 134lelttrd 11448 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < 2)
136 eluzle 12916 . . . . . 6 ((𝑁 gcd 𝑅) ∈ (ℤ‘2) → 2 ≤ (𝑁 gcd 𝑅))
137136adantl 481 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ≤ (𝑁 gcd 𝑅))
138127, 128, 127, 135, 137ltletrd 11450 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
139127ltnrd 11424 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
140138, 139pm2.21dd 195 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) = 1)
141 elnn1uz2 12990 . . . 4 ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
142125, 141sylib 218 . . 3 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
143124, 140, 142mpjaodan 959 . 2 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
144123, 143pm2.61dan 812 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  5c5 12351  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cfl 13841  cceil 13842  cexp 14112  cprod 15951  cdvds 16302   gcd cgcd 16540   logb clogb 26825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-ceil 13844  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-lcm 16637  df-lcmf 16638  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-logb 26826
This theorem is referenced by:  aks4d1p8  42044
  Copyright terms: Public domain W3C validator