Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p5 39994
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p5.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p5.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p5.5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
Assertion
Ref Expression
aks4d1p5 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)

Proof of Theorem aks4d1p5
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
2 aks4d1p5.1 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p5.2 . . . . . . . . . . . . . 14 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p5.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p5.4 . . . . . . . . . . . . . 14 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 39993 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 498 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13189 . . . . . . . . . . . 12 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
109nnred 11893 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
11 eluzelz 12496 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
122, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
13 0red 10884 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
14 3re 11958 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
1612zred 12330 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
17 3pos 11983 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12499 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11040 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
2212, 21jca 515 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12234 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 237 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
25 gcdnncl 16117 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ)
2624, 9, 25syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ)
2726nnred 11893 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ)
2826nnne0d 11928 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ≠ 0)
2910, 27, 28redivcld 11708 . . . . . . . . 9 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3029adantr 484 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3110adantr 484 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
3230, 31ltnled 11027 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
3332biimprd 251 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
3433imp 410 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
355a1i 11 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
36 ssrab2 4010 . . . . . . . . . . . 12 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
3736a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
38 elfznn 13189 . . . . . . . . . . . . . . 15 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
3938adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
4039nnred 11893 . . . . . . . . . . . . 13 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
4140ex 416 . . . . . . . . . . . 12 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
4241ssrdv 3924 . . . . . . . . . . 11 (𝜑 → (1...𝐵) ⊆ ℝ)
4337, 42sstrd 3928 . . . . . . . . . 10 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
4443adantr 484 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
45 fzfid 13596 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
4645, 37ssfid 8946 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
4746adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
482, 3, 4aks4d1p3 39992 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
49 rabn0 4317 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
5048, 49sylibr 237 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
5150adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
52 fiminre 11827 . . . . . . . . . 10 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
5344, 47, 51, 52syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
54 breq1 5073 . . . . . . . . . . 11 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
5554notbid 321 . . . . . . . . . 10 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
56 1zzd 12256 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ)
574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
58 2re 11952 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
60 2pos 11981 . . . . . . . . . . . . . . . . 17 0 < 2
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
62 1red 10882 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
63 1lt2 12049 . . . . . . . . . . . . . . . . . . 19 1 < 2
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
6562, 64ltned 11016 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
6665necomd 2999 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
6759, 61, 16, 21, 66relogbcld 39887 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
68 5nn0 12158 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
6968a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
7067, 69reexpcld 13784 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
71 ceilcl 13465 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7270, 71syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7357, 72eqeltrd 2840 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
7473adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ)
7524nnzd 12329 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
76 divgcdnnr 16126 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
779, 75, 76syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7877adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7978nnzd 12329 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ)
8078nnge1d 11926 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅)))
8174zred 12330 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ)
829nnrpd 12674 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
8382adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
8426nnrpd 12674 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ+)
8584adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
8631recnd 10909 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
8783rpne0d 12681 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0)
8886, 87dividd 11654 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
89 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
9088, 89eqbrtrd 5092 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
9131, 83, 85, 90ltdiv23d 12743 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
9230, 31, 91ltled 11028 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅)
93 elfzle2 13164 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
947, 93syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐵)
9594adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
9630, 31, 81, 92, 95letrd 11037 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵)
9756, 74, 79, 80, 96elfzd 13151 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵))
98 aks4d1p5.5 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
99 simpr 488 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
100 exmidd 896 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
10198, 99, 100mpjaodan 959 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
10255, 97, 101elrabd 3620 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
103 lbinfle 11835 . . . . . . . . 9 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10444, 53, 102, 103syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10535, 104eqbrtrd 5092 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
10631, 30lenltd 11026 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
107105, 106mpbid 235 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
108107adantr 484 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
10934, 108pm2.21dd 198 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
1101, 109pm2.61dan 813 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
11182rpred 12676 . . . . . 6 (𝜑𝑅 ∈ ℝ)
112111adantr 484 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
11391, 107pm2.21dd 198 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
114113nnrpd 12674 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
115112recnd 10909 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
116115, 87dividd 11654 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
117116, 89eqbrtrd 5092 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
118112, 83, 114, 117ltdiv23d 12743 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
11977nnred 11893 . . . . . 6 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
120119, 111ltnled 11027 . . . . 5 (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
121120adantr 484 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
122118, 121mpbid 235 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
123110, 122pm2.21dd 198 . 2 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
124 simpr 488 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1)
12526adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
126125nnred 11893 . . . . . 6 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ)
127126adantr 484 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ∈ ℝ)
12858a1i 11 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ∈ ℝ)
129 1red 10882 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 ∈ ℝ)
13027, 62lenltd 11026 . . . . . . . . 9 (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅)))
131130biimprd 251 . . . . . . . 8 (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1))
132131imp 410 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1)
133132adantr 484 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ≤ 1)
13463a1i 11 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 < 2)
135127, 129, 128, 133, 134lelttrd 11038 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < 2)
136 eluzle 12499 . . . . . 6 ((𝑁 gcd 𝑅) ∈ (ℤ‘2) → 2 ≤ (𝑁 gcd 𝑅))
137136adantl 485 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ≤ (𝑁 gcd 𝑅))
138127, 128, 127, 135, 137ltletrd 11040 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
139127ltnrd 11014 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
140138, 139pm2.21dd 198 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) = 1)
141 elnn1uz2 12569 . . . 4 ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
142125, 141sylib 221 . . 3 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
143124, 140, 142mpjaodan 959 . 2 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
144123, 143pm2.61dan 813 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3884  c0 4254   class class class wbr 5070  cfv 6415  (class class class)co 7252  Fincfn 8668  infcinf 9105  cr 10776  0cc0 10777  1c1 10778   · cmul 10782   < clt 10915  cle 10916  cmin 11110   / cdiv 11537  cn 11878  2c2 11933  3c3 11934  5c5 11936  0cn0 12138  cz 12224  cuz 12486  +crp 12634  ...cfz 13143  cfl 13413  cceil 13414  cexp 13685  cprod 15518  cdvds 15866   gcd cgcd 16104   logb clogb 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-inf2 9304  ax-cc 10097  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854  ax-pre-sup 10855  ax-addf 10856  ax-mulf 10857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-symdif 4174  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-ofr 7509  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-2o 8245  df-oadd 8248  df-omul 8249  df-er 8433  df-map 8552  df-pm 8553  df-ixp 8621  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-fi 9075  df-sup 9106  df-inf 9107  df-oi 9174  df-dju 9565  df-card 9603  df-acn 9606  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-div 11538  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-uz 12487  df-q 12593  df-rp 12635  df-xneg 12752  df-xadd 12753  df-xmul 12754  df-ioo 12987  df-ioc 12988  df-ico 12989  df-icc 12990  df-fz 13144  df-fzo 13287  df-fl 13415  df-ceil 13416  df-mod 13493  df-seq 13625  df-exp 13686  df-fac 13891  df-bc 13920  df-hash 13948  df-shft 14681  df-cj 14713  df-re 14714  df-im 14715  df-sqrt 14849  df-abs 14850  df-limsup 15083  df-clim 15100  df-rlim 15101  df-sum 15301  df-prod 15519  df-ef 15680  df-e 15681  df-sin 15682  df-cos 15683  df-pi 15685  df-dvds 15867  df-gcd 16105  df-lcm 16198  df-lcmf 16199  df-prm 16280  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-starv 16878  df-sca 16879  df-vsca 16880  df-ip 16881  df-tset 16882  df-ple 16883  df-ds 16885  df-unif 16886  df-hom 16887  df-cco 16888  df-rest 17025  df-topn 17026  df-0g 17044  df-gsum 17045  df-topgen 17046  df-pt 17047  df-prds 17050  df-xrs 17105  df-qtop 17110  df-imas 17111  df-xps 17113  df-mre 17187  df-mrc 17188  df-acs 17190  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-submnd 18321  df-mulg 18591  df-cntz 18813  df-cmn 19278  df-psmet 20477  df-xmet 20478  df-met 20479  df-bl 20480  df-mopn 20481  df-fbas 20482  df-fg 20483  df-cnfld 20486  df-top 21926  df-topon 21943  df-topsp 21965  df-bases 21979  df-cld 22053  df-ntr 22054  df-cls 22055  df-nei 22132  df-lp 22170  df-perf 22171  df-cn 22261  df-cnp 22262  df-haus 22349  df-cmp 22421  df-tx 22596  df-hmeo 22789  df-fil 22880  df-fm 22972  df-flim 22973  df-flf 22974  df-xms 23356  df-ms 23357  df-tms 23358  df-cncf 23922  df-ovol 24508  df-vol 24509  df-mbf 24663  df-itg1 24664  df-itg2 24665  df-ibl 24666  df-itg 24667  df-0p 24714  df-limc 24910  df-dv 24911  df-log 25592  df-cxp 25593  df-logb 25795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator