Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p5 Structured version   Visualization version   GIF version

Theorem aks4d1p5 41414
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem. Precondition will be eliminated in further theorem. (Contributed by metakunt, 30-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p5.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p5.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p5.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p5.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
aks4d1p5.5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
Assertion
Ref Expression
aks4d1p5 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)

Proof of Theorem aks4d1p5
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
2 aks4d1p5.1 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
3 aks4d1p5.2 . . . . . . . . . . . . . 14 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p5.3 . . . . . . . . . . . . . 14 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p5.4 . . . . . . . . . . . . . 14 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
62, 3, 4, 5aks4d1p4 41413 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
76simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
8 elfznn 13537 . . . . . . . . . . . 12 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
109nnred 12234 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
11 eluzelz 12839 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
122, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
13 0red 11224 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
14 3re 12299 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
1612zred 12673 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
17 3pos 12324 . . . . . . . . . . . . . . . 16 0 < 3
1817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
19 eluzle 12842 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
202, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
2113, 15, 16, 18, 20ltletrd 11381 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
2212, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
23 elnnz 12575 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
2422, 23sylibr 233 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
25 gcdnncl 16455 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑁 gcd 𝑅) ∈ ℕ)
2624, 9, 25syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 𝑅) ∈ ℕ)
2726nnred 12234 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ)
2826nnne0d 12269 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) ≠ 0)
2910, 27, 28redivcld 12049 . . . . . . . . 9 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3029adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
3110adantr 480 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
3230, 31ltnled 11368 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
3332biimprd 247 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
3433imp 406 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
355a1i 11 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
36 ssrab2 4077 . . . . . . . . . . . 12 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
3736a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
38 elfznn 13537 . . . . . . . . . . . . . . 15 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
4039nnred 12234 . . . . . . . . . . . . 13 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
4241ssrdv 3988 . . . . . . . . . . 11 (𝜑 → (1...𝐵) ⊆ ℝ)
4337, 42sstrd 3992 . . . . . . . . . 10 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
4443adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
45 fzfid 13945 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
4645, 37ssfid 9273 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
4746adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
482, 3, 4aks4d1p3 41412 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
49 rabn0 4385 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
5048, 49sylibr 233 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
5150adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
52 fiminre 12168 . . . . . . . . . 10 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
5344, 47, 51, 52syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
54 breq1 5151 . . . . . . . . . . 11 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (𝑟𝐴 ↔ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
5554notbid 318 . . . . . . . . . 10 (𝑟 = (𝑅 / (𝑁 gcd 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
56 1zzd 12600 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℤ)
574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
58 2re 12293 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
60 2pos 12322 . . . . . . . . . . . . . . . . 17 0 < 2
6160a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
62 1red 11222 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
63 1lt2 12390 . . . . . . . . . . . . . . . . . . 19 1 < 2
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
6562, 64ltned 11357 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
6665necomd 2995 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
6759, 61, 16, 21, 66relogbcld 41307 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝑁) ∈ ℝ)
68 5nn0 12499 . . . . . . . . . . . . . . . 16 5 ∈ ℕ0
6968a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 5 ∈ ℕ0)
7067, 69reexpcld 14135 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
71 ceilcl 13814 . . . . . . . . . . . . . 14 (((2 logb 𝑁)↑5) ∈ ℝ → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7270, 71syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
7357, 72eqeltrd 2832 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
7473adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℤ)
7524nnzd 12592 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
76 divgcdnnr 16464 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
779, 75, 76syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7877adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℕ)
7978nnzd 12592 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℤ)
8078nnge1d 12267 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ≤ (𝑅 / (𝑁 gcd 𝑅)))
8174zred 12673 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝐵 ∈ ℝ)
829nnrpd 13021 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
8382adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
8426nnrpd 13021 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑅) ∈ ℝ+)
8584adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
8631recnd 11249 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
8783rpne0d 13028 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≠ 0)
8886, 87dividd 11995 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
89 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
9088, 89eqbrtrd 5170 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
9131, 83, 85, 90ltdiv23d 13090 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
9230, 31, 91ltled 11369 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝑅)
93 elfzle2 13512 . . . . . . . . . . . . . 14 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
947, 93syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐵)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
9630, 31, 81, 92, 95letrd 11378 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ≤ 𝐵)
9756, 74, 79, 80, 96elfzd 13499 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ (1...𝐵))
98 aks4d1p5.5 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
99 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
100 exmidd 893 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴 ∨ ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
10198, 99, 100mpjaodan 956 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
10255, 97, 101elrabd 3685 . . . . . . . . 9 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
103 lbinfle 12176 . . . . . . . . 9 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / (𝑁 gcd 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10444, 53, 102, 103syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑁 gcd 𝑅)))
10535, 104eqbrtrd 5170 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
10631, 30lenltd 11367 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)) ↔ ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅))
107105, 106mpbid 231 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
108107adantr 480 . . . . 5 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → ¬ (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
10934, 108pm2.21dd 194 . . . 4 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
1101, 109pm2.61dan 810 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
11182rpred 13023 . . . . . 6 (𝜑𝑅 ∈ ℝ)
112111adantr 480 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
11391, 107pm2.21dd 194 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
114113nnrpd 13021 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ+)
115112recnd 11249 . . . . . . 7 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℂ)
116115, 87dividd 11995 . . . . . 6 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) = 1)
117116, 89eqbrtrd 5170 . . . . 5 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / 𝑅) < (𝑁 gcd 𝑅))
118112, 83, 114, 117ltdiv23d 13090 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑅 / (𝑁 gcd 𝑅)) < 𝑅)
11977nnred 12234 . . . . . 6 (𝜑 → (𝑅 / (𝑁 gcd 𝑅)) ∈ ℝ)
120119, 111ltnled 11368 . . . . 5 (𝜑 → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
121120adantr 480 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ((𝑅 / (𝑁 gcd 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅))))
122118, 121mpbid 231 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ 𝑅 ≤ (𝑅 / (𝑁 gcd 𝑅)))
123110, 122pm2.21dd 194 . 2 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
124 simpr 484 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) = 1) → (𝑁 gcd 𝑅) = 1)
12526adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℕ)
126125nnred 12234 . . . . . 6 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ∈ ℝ)
127126adantr 480 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ∈ ℝ)
12858a1i 11 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ∈ ℝ)
129 1red 11222 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 ∈ ℝ)
13027, 62lenltd 11367 . . . . . . . . 9 (𝜑 → ((𝑁 gcd 𝑅) ≤ 1 ↔ ¬ 1 < (𝑁 gcd 𝑅)))
131130biimprd 247 . . . . . . . 8 (𝜑 → (¬ 1 < (𝑁 gcd 𝑅) → (𝑁 gcd 𝑅) ≤ 1))
132131imp 406 . . . . . . 7 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) ≤ 1)
133132adantr 480 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) ≤ 1)
13463a1i 11 . . . . . 6 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 1 < 2)
135127, 129, 128, 133, 134lelttrd 11379 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < 2)
136 eluzle 12842 . . . . . 6 ((𝑁 gcd 𝑅) ∈ (ℤ‘2) → 2 ≤ (𝑁 gcd 𝑅))
137136adantl 481 . . . . 5 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → 2 ≤ (𝑁 gcd 𝑅))
138127, 128, 127, 135, 137ltletrd 11381 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
139127ltnrd 11355 . . . 4 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → ¬ (𝑁 gcd 𝑅) < (𝑁 gcd 𝑅))
140138, 139pm2.21dd 194 . . 3 (((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) ∧ (𝑁 gcd 𝑅) ∈ (ℤ‘2)) → (𝑁 gcd 𝑅) = 1)
141 elnn1uz2 12916 . . . 4 ((𝑁 gcd 𝑅) ∈ ℕ ↔ ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
142125, 141sylib 217 . . 3 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → ((𝑁 gcd 𝑅) = 1 ∨ (𝑁 gcd 𝑅) ∈ (ℤ‘2)))
143124, 140, 142mpjaodan 956 . 2 ((𝜑 ∧ ¬ 1 < (𝑁 gcd 𝑅)) → (𝑁 gcd 𝑅) = 1)
144123, 143pm2.61dan 810 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  wss 3948  c0 4322   class class class wbr 5148  cfv 6543  (class class class)co 7412  Fincfn 8945  infcinf 9442  cr 11115  0cc0 11116  1c1 11117   · cmul 11121   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  2c2 12274  3c3 12275  5c5 12277  0cn0 12479  cz 12565  cuz 12829  +crp 12981  ...cfz 13491  cfl 13762  cceil 13763  cexp 14034  cprod 15856  cdvds 16204   gcd cgcd 16442   logb clogb 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-ceil 13765  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-prod 15857  df-ef 16018  df-e 16019  df-sin 16020  df-cos 16021  df-pi 16023  df-dvds 16205  df-gcd 16443  df-lcm 16534  df-lcmf 16535  df-prm 16616  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-ovol 25313  df-vol 25314  df-mbf 25468  df-itg1 25469  df-itg2 25470  df-ibl 25471  df-itg 25472  df-0p 25519  df-limc 25715  df-dv 25716  df-log 26405  df-cxp 26406  df-logb 26611
This theorem is referenced by:  aks4d1p8  41421
  Copyright terms: Public domain W3C validator