Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt2 Structured version   Visualization version   GIF version

Theorem tlt2 32942
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt2.b 𝐵 = (Base‘𝐾)
tlt2.e = (le‘𝐾)
tlt2.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 < 𝑋))

Proof of Theorem tlt2
StepHypRef Expression
1 exmidd 894 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ∨ ¬ 𝑋 𝑌))
2 tlt2.b . . . . 5 𝐵 = (Base‘𝐾)
3 tlt2.e . . . . 5 = (le‘𝐾)
4 tlt2.l . . . . 5 < = (lt‘𝐾)
52, 3, 4tltnle 18492 . . . 4 ((𝐾 ∈ Toset ∧ 𝑌𝐵𝑋𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 𝑌))
653com23 1126 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 𝑌))
76orbi2d 914 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 < 𝑋) ↔ (𝑋 𝑌 ∨ ¬ 𝑋 𝑌)))
81, 7mpbird 257 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 846  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  ltcplt 18378  Tosetctos 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-proset 18365  df-poset 18383  df-plt 18400  df-toset 18487
This theorem is referenced by:  tlt3  32943  archirngz  33169  archiabllem2a  33174
  Copyright terms: Public domain W3C validator