![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt2 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt2.b | ⊢ 𝐵 = (Base‘𝐾) |
tlt2.e | ⊢ ≤ = (le‘𝐾) |
tlt2.l | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tlt2 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd 895 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌)) | |
2 | tlt2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tlt2.e | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | tlt2.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
5 | 2, 3, 4 | tltnle 18480 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
6 | 5 | 3com23 1125 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
7 | 6 | orbi2d 915 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌))) |
8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 ltcplt 18366 Tosetctos 18474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-proset 18352 df-poset 18371 df-plt 18388 df-toset 18475 |
This theorem is referenced by: tlt3 32945 archirngz 33179 archiabllem2a 33184 |
Copyright terms: Public domain | W3C validator |