![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt2 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt2.b | ⊢ 𝐵 = (Base‘𝐾) |
tlt2.e | ⊢ ≤ = (le‘𝐾) |
tlt2.l | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tlt2 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd 882 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌)) | |
2 | tlt2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tlt2.e | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | tlt2.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
5 | 2, 3, 4 | tltnle 30228 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
6 | 5 | 3com23 1117 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
7 | 6 | orbi2d 902 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌))) |
8 | 1, 7 | mpbird 249 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∨ wo 836 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 Basecbs 16259 lecple 16349 ltcplt 17331 Tosetctos 17423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fv 6145 df-proset 17318 df-poset 17336 df-plt 17348 df-toset 17424 |
This theorem is referenced by: tlt3 30231 archirngz 30309 archiabllem2a 30314 |
Copyright terms: Public domain | W3C validator |