![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt2 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt2.b | ⊢ 𝐵 = (Base‘𝐾) |
tlt2.e | ⊢ ≤ = (le‘𝐾) |
tlt2.l | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tlt2 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidd 893 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌)) | |
2 | tlt2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tlt2.e | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | tlt2.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
5 | 2, 3, 4 | tltnle 18417 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
6 | 5 | 3com23 1123 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
7 | 6 | orbi2d 913 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌))) |
8 | 1, 7 | mpbird 256 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 lecple 17243 ltcplt 18303 Tosetctos 18411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-proset 18290 df-poset 18308 df-plt 18325 df-toset 18412 |
This theorem is referenced by: tlt3 32786 archirngz 32989 archiabllem2a 32994 |
Copyright terms: Public domain | W3C validator |