| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt2 | Structured version Visualization version GIF version | ||
| Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| tlt2.b | ⊢ 𝐵 = (Base‘𝐾) |
| tlt2.e | ⊢ ≤ = (le‘𝐾) |
| tlt2.l | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| tlt2 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidd 895 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌)) | |
| 2 | tlt2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | tlt2.e | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 4 | tlt2.l | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 5 | 2, 3, 4 | tltnle 18326 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
| 6 | 5 | 3com23 1126 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 ↔ ¬ 𝑋 ≤ 𝑌)) |
| 7 | 6 | orbi2d 915 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ ¬ 𝑋 ≤ 𝑌))) |
| 8 | 1, 7 | mpbird 257 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 ltcplt 18214 Tosetctos 18320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-proset 18200 df-poset 18219 df-plt 18234 df-toset 18321 |
| This theorem is referenced by: tlt3 32951 archirngz 33158 archiabllem2a 33163 |
| Copyright terms: Public domain | W3C validator |