Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   GIF version

Theorem chtvalz 33046
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Distinct variable group:   𝑛,𝑁

Proof of Theorem chtvalz
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 zre 12462 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 chtval 26411 . . 3 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
31, 2syl 17 . 2 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
4 nnz 12479 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5 ppisval 26405 . . . . . . . . 9 (𝑁 ∈ ℝ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
61, 5syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
7 flid 13668 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
87oveq2d 7368 . . . . . . . . 9 (𝑁 ∈ ℤ → (2...(⌊‘𝑁)) = (2...𝑁))
98ineq1d 4170 . . . . . . . 8 (𝑁 ∈ ℤ → ((2...(⌊‘𝑁)) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
106, 9eqtrd 2778 . . . . . . 7 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
114, 10syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
12 2nn 12185 . . . . . . . . . . . . 13 2 ∈ ℕ
13 nnuz 12761 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1412, 13eleqtri 2837 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
15 fzss1 13435 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
1614, 15ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
17 ssdif0 4322 . . . . . . . . . . 11 ((2...𝑁) ⊆ (1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅)
1816, 17mpbi 229 . . . . . . . . . 10 ((2...𝑁) ∖ (1...𝑁)) = ∅
1918ineq1i 4167 . . . . . . . . 9 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = (∅ ∩ ℙ)
20 0in 4352 . . . . . . . . 9 (∅ ∩ ℙ) = ∅
2119, 20eqtri 2766 . . . . . . . 8 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅)
2313eleq2i 2830 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
24 fzpred 13444 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2523, 24sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2625eqcomd 2744 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∪ ((1 + 1)...𝑁)) = (1...𝑁))
27 1p1e2 12237 . . . . . . . . . . . . 13 (1 + 1) = 2
2827oveq1i 7362 . . . . . . . . . . . 12 ((1 + 1)...𝑁) = (2...𝑁)
2928a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 + 1)...𝑁) = (2...𝑁))
3026, 29difeq12d 4082 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ((1...𝑁) ∖ (2...𝑁)))
31 difun2 4439 . . . . . . . . . . 11 (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ({1} ∖ ((1 + 1)...𝑁))
32 fzpreddisj 13445 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
3323, 32sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
34 disjdif2 4438 . . . . . . . . . . . 12 (({1} ∩ ((1 + 1)...𝑁)) = ∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3533, 34syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3631, 35eqtrid 2790 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = {1})
3730, 36eqtr3d 2780 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1...𝑁) ∖ (2...𝑁)) = {1})
3837ineq1d 4170 . . . . . . . 8 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ({1} ∩ ℙ))
39 incom 4160 . . . . . . . . 9 (ℙ ∩ {1}) = ({1} ∩ ℙ)
40 1nprm 16515 . . . . . . . . . 10 ¬ 1 ∈ ℙ
41 disjsn 4671 . . . . . . . . . 10 ((ℙ ∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ)
4240, 41mpbir 230 . . . . . . . . 9 (ℙ ∩ {1}) = ∅
4339, 42eqtr3i 2768 . . . . . . . 8 ({1} ∩ ℙ) = ∅
4438, 43eqtrdi 2794 . . . . . . 7 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅)
45 difininv 31272 . . . . . . 7 (((((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅ ∧ (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4622, 44, 45syl2anc 585 . . . . . 6 (𝑁 ∈ ℕ → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4711, 46eqtrd 2778 . . . . 5 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4847adantl 483 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
49 znnnlt1 12489 . . . . . 6 (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
5049biimpa 478 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → 𝑁 < 1)
51 incom 4160 . . . . . . 7 ((0[,]𝑁) ∩ ℙ) = (ℙ ∩ (0[,]𝑁))
52 isprm3 16519 . . . . . . . . . . 11 (𝑛 ∈ ℙ ↔ (𝑛 ∈ (ℤ‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖𝑛))
5352simplbi 499 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
5453ssriv 3947 . . . . . . . . 9 ℙ ⊆ (ℤ‘2)
5512nnzi 12486 . . . . . . . . . 10 2 ∈ ℤ
56 uzssico 31512 . . . . . . . . . 10 (2 ∈ ℤ → (ℤ‘2) ⊆ (2[,)+∞))
5755, 56ax-mp 5 . . . . . . . . 9 (ℤ‘2) ⊆ (2[,)+∞)
5854, 57sstri 3952 . . . . . . . 8 ℙ ⊆ (2[,)+∞)
59 incom 4160 . . . . . . . . 9 ((0[,]𝑁) ∩ (2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁))
60 0xr 11161 . . . . . . . . . . . 12 0 ∈ ℝ*
6160a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈ ℝ*)
6212nnrei 12121 . . . . . . . . . . . . 13 2 ∈ ℝ
6362rexri 11172 . . . . . . . . . . . 12 2 ∈ ℝ*
6463a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ*)
65 0le0 12213 . . . . . . . . . . . 12 0 ≤ 0
6665a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤ 0)
671adantr 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℝ)
68 1red 11115 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℝ)
6962a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ)
70 simpr 486 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1)
71 1lt2 12283 . . . . . . . . . . . . 13 1 < 2
7271a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 < 2)
7367, 68, 69, 70, 72lttrd 11275 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2)
74 iccssico 13291 . . . . . . . . . . 11 (((0 ∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑁 < 2)) → (0[,]𝑁) ⊆ (0[,)2))
7561, 64, 66, 73, 74syl22anc 838 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆ (0[,)2))
76 pnfxr 11168 . . . . . . . . . . 11 +∞ ∈ ℝ*
77 icodisj 13348 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) = ∅)
7860, 63, 76, 77mp3an 1462 . . . . . . . . . 10 ((0[,)2) ∩ (2[,)+∞)) = ∅
79 ssdisj 4418 . . . . . . . . . 10 (((0[,]𝑁) ⊆ (0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8075, 78, 79sylancl 587 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8159, 80eqtr3id 2792 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞) ∩ (0[,]𝑁)) = ∅)
82 ssdisj 4418 . . . . . . . 8 ((ℙ ⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩ (0[,]𝑁)) = ∅)
8358, 81, 82sylancr 588 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩ (0[,]𝑁)) = ∅)
8451, 83eqtrid 2790 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ∅)
85 1zzd 12493 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℤ)
86 simpl 484 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℤ)
87 fzn 13412 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅))
8887biimpa 478 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 1) → (1...𝑁) = ∅)
8985, 86, 70, 88syl21anc 837 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅)
9089ineq1d 4170 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅ ∩ ℙ))
9190, 20eqtrdi 2794 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = ∅)
9284, 91eqtr4d 2781 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9350, 92syldan 592 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
94 exmidd 895 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ))
9548, 93, 94mpjaodan 958 . . 3 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9695sumeq1d 15546 . 2 (𝑁 ∈ ℤ → Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
973, 96eqtrd 2778 1 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3063  cdif 3906  cun 3907  cin 3908  wss 3909  c0 4281  {csn 4585   class class class wbr 5104  cfv 6494  (class class class)co 7352  cr 11009  0cc0 11010  1c1 11011   + caddc 11013  +∞cpnf 11145  *cxr 11147   < clt 11148  cle 11149  cmin 11344  cn 12112  2c2 12167  cz 12458  cuz 12722  [,)cico 13221  [,]cicc 13222  ...cfz 13379  cfl 13650  Σcsu 15530  cdvds 16096  cprime 16507  logclog 25862  θccht 26392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-2o 8406  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-inf 9338  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-n0 12373  df-z 12459  df-uz 12723  df-rp 12871  df-ico 13225  df-icc 13226  df-fz 13380  df-fl 13652  df-seq 13862  df-exp 13923  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-sum 15531  df-dvds 16097  df-prm 16508  df-cht 26398
This theorem is referenced by:  hgt750lemd  33065
  Copyright terms: Public domain W3C validator