Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   GIF version

Theorem chtvalz 34644
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Distinct variable group:   𝑛,𝑁

Proof of Theorem chtvalz
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 zre 12617 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 chtval 27153 . . 3 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
31, 2syl 17 . 2 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
4 nnz 12634 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5 ppisval 27147 . . . . . . . . 9 (𝑁 ∈ ℝ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
61, 5syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
7 flid 13848 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
87oveq2d 7447 . . . . . . . . 9 (𝑁 ∈ ℤ → (2...(⌊‘𝑁)) = (2...𝑁))
98ineq1d 4219 . . . . . . . 8 (𝑁 ∈ ℤ → ((2...(⌊‘𝑁)) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
106, 9eqtrd 2777 . . . . . . 7 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
114, 10syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
12 2nn 12339 . . . . . . . . . . . . 13 2 ∈ ℕ
13 nnuz 12921 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1412, 13eleqtri 2839 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
15 fzss1 13603 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
1614, 15ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
17 ssdif0 4366 . . . . . . . . . . 11 ((2...𝑁) ⊆ (1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅)
1816, 17mpbi 230 . . . . . . . . . 10 ((2...𝑁) ∖ (1...𝑁)) = ∅
1918ineq1i 4216 . . . . . . . . 9 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = (∅ ∩ ℙ)
20 0in 4397 . . . . . . . . 9 (∅ ∩ ℙ) = ∅
2119, 20eqtri 2765 . . . . . . . 8 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅)
2313eleq2i 2833 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
24 fzpred 13612 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2523, 24sylbi 217 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2625eqcomd 2743 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∪ ((1 + 1)...𝑁)) = (1...𝑁))
27 1p1e2 12391 . . . . . . . . . . . . 13 (1 + 1) = 2
2827oveq1i 7441 . . . . . . . . . . . 12 ((1 + 1)...𝑁) = (2...𝑁)
2928a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 + 1)...𝑁) = (2...𝑁))
3026, 29difeq12d 4127 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ((1...𝑁) ∖ (2...𝑁)))
31 difun2 4481 . . . . . . . . . . 11 (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ({1} ∖ ((1 + 1)...𝑁))
32 fzpreddisj 13613 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
3323, 32sylbi 217 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
34 disjdif2 4480 . . . . . . . . . . . 12 (({1} ∩ ((1 + 1)...𝑁)) = ∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3533, 34syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3631, 35eqtrid 2789 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = {1})
3730, 36eqtr3d 2779 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1...𝑁) ∖ (2...𝑁)) = {1})
3837ineq1d 4219 . . . . . . . 8 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ({1} ∩ ℙ))
39 incom 4209 . . . . . . . . 9 (ℙ ∩ {1}) = ({1} ∩ ℙ)
40 1nprm 16716 . . . . . . . . . 10 ¬ 1 ∈ ℙ
41 disjsn 4711 . . . . . . . . . 10 ((ℙ ∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ)
4240, 41mpbir 231 . . . . . . . . 9 (ℙ ∩ {1}) = ∅
4339, 42eqtr3i 2767 . . . . . . . 8 ({1} ∩ ℙ) = ∅
4438, 43eqtrdi 2793 . . . . . . 7 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅)
45 difininv 32536 . . . . . . 7 (((((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅ ∧ (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4622, 44, 45syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4711, 46eqtrd 2777 . . . . 5 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4847adantl 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
49 znnnlt1 12644 . . . . . 6 (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
5049biimpa 476 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → 𝑁 < 1)
51 incom 4209 . . . . . . 7 ((0[,]𝑁) ∩ ℙ) = (ℙ ∩ (0[,]𝑁))
52 isprm3 16720 . . . . . . . . . . 11 (𝑛 ∈ ℙ ↔ (𝑛 ∈ (ℤ‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖𝑛))
5352simplbi 497 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
5453ssriv 3987 . . . . . . . . 9 ℙ ⊆ (ℤ‘2)
5512nnzi 12641 . . . . . . . . . 10 2 ∈ ℤ
56 uzssico 32786 . . . . . . . . . 10 (2 ∈ ℤ → (ℤ‘2) ⊆ (2[,)+∞))
5755, 56ax-mp 5 . . . . . . . . 9 (ℤ‘2) ⊆ (2[,)+∞)
5854, 57sstri 3993 . . . . . . . 8 ℙ ⊆ (2[,)+∞)
59 incom 4209 . . . . . . . . 9 ((0[,]𝑁) ∩ (2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁))
60 0xr 11308 . . . . . . . . . . . 12 0 ∈ ℝ*
6160a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈ ℝ*)
6212nnrei 12275 . . . . . . . . . . . . 13 2 ∈ ℝ
6362rexri 11319 . . . . . . . . . . . 12 2 ∈ ℝ*
6463a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ*)
65 0le0 12367 . . . . . . . . . . . 12 0 ≤ 0
6665a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤ 0)
671adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℝ)
68 1red 11262 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℝ)
6962a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ)
70 simpr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1)
71 1lt2 12437 . . . . . . . . . . . . 13 1 < 2
7271a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 < 2)
7367, 68, 69, 70, 72lttrd 11422 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2)
74 iccssico 13459 . . . . . . . . . . 11 (((0 ∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑁 < 2)) → (0[,]𝑁) ⊆ (0[,)2))
7561, 64, 66, 73, 74syl22anc 839 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆ (0[,)2))
76 pnfxr 11315 . . . . . . . . . . 11 +∞ ∈ ℝ*
77 icodisj 13516 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) = ∅)
7860, 63, 76, 77mp3an 1463 . . . . . . . . . 10 ((0[,)2) ∩ (2[,)+∞)) = ∅
79 ssdisj 4460 . . . . . . . . . 10 (((0[,]𝑁) ⊆ (0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8075, 78, 79sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8159, 80eqtr3id 2791 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞) ∩ (0[,]𝑁)) = ∅)
82 ssdisj 4460 . . . . . . . 8 ((ℙ ⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩ (0[,]𝑁)) = ∅)
8358, 81, 82sylancr 587 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩ (0[,]𝑁)) = ∅)
8451, 83eqtrid 2789 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ∅)
85 1zzd 12648 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℤ)
86 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℤ)
87 fzn 13580 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅))
8887biimpa 476 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 1) → (1...𝑁) = ∅)
8985, 86, 70, 88syl21anc 838 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅)
9089ineq1d 4219 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅ ∩ ℙ))
9190, 20eqtrdi 2793 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = ∅)
9284, 91eqtr4d 2780 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9350, 92syldan 591 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
94 exmidd 896 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ))
9548, 93, 94mpjaodan 961 . . 3 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9695sumeq1d 15736 . 2 (𝑁 ∈ ℤ → Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
973, 96eqtrd 2777 1 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  cz 12613  cuz 12878  [,)cico 13389  [,]cicc 13390  ...cfz 13547  cfl 13830  Σcsu 15722  cdvds 16290  cprime 16708  logclog 26596  θccht 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-sum 15723  df-dvds 16291  df-prm 16709  df-cht 27140
This theorem is referenced by:  hgt750lemd  34663
  Copyright terms: Public domain W3C validator