Step | Hyp | Ref
| Expression |
1 | | zre 12332 |
. . 3
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
2 | | chtval 26268 |
. . 3
⊢ (𝑁 ∈ ℝ →
(θ‘𝑁) =
Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝑁 ∈ ℤ →
(θ‘𝑁) =
Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛)) |
4 | | nnz 12351 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
5 | | ppisval 26262 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ →
((0[,]𝑁) ∩ ℙ) =
((2...(⌊‘𝑁))
∩ ℙ)) |
6 | 1, 5 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
((0[,]𝑁) ∩ ℙ) =
((2...(⌊‘𝑁))
∩ ℙ)) |
7 | | flid 13537 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(⌊‘𝑁) = 𝑁) |
8 | 7 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ →
(2...(⌊‘𝑁)) =
(2...𝑁)) |
9 | 8 | ineq1d 4146 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
((2...(⌊‘𝑁))
∩ ℙ) = ((2...𝑁)
∩ ℙ)) |
10 | 6, 9 | eqtrd 2779 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
((0[,]𝑁) ∩ ℙ) =
((2...𝑁) ∩
ℙ)) |
11 | 4, 10 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((0[,]𝑁) ∩ ℙ) =
((2...𝑁) ∩
ℙ)) |
12 | | 2nn 12055 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
13 | | nnuz 12630 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
14 | 12, 13 | eleqtri 2838 |
. . . . . . . . . . . 12
⊢ 2 ∈
(ℤ≥‘1) |
15 | | fzss1 13304 |
. . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) → (2...𝑁) ⊆ (1...𝑁)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(2...𝑁) ⊆
(1...𝑁) |
17 | | ssdif0 4298 |
. . . . . . . . . . 11
⊢
((2...𝑁) ⊆
(1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅) |
18 | 16, 17 | mpbi 229 |
. . . . . . . . . 10
⊢
((2...𝑁) ∖
(1...𝑁)) =
∅ |
19 | 18 | ineq1i 4143 |
. . . . . . . . 9
⊢
(((2...𝑁) ∖
(1...𝑁)) ∩ ℙ) =
(∅ ∩ ℙ) |
20 | | 0in 4328 |
. . . . . . . . 9
⊢ (∅
∩ ℙ) = ∅ |
21 | 19, 20 | eqtri 2767 |
. . . . . . . 8
⊢
(((2...𝑁) ∖
(1...𝑁)) ∩ ℙ) =
∅ |
22 | 21 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(((2...𝑁) ∖
(1...𝑁)) ∩ ℙ) =
∅) |
23 | 13 | eleq2i 2831 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
24 | | fzpred 13313 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
25 | 23, 24 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
(1...𝑁) = ({1} ∪ ((1 +
1)...𝑁))) |
26 | 25 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ({1}
∪ ((1 + 1)...𝑁)) =
(1...𝑁)) |
27 | | 1p1e2 12107 |
. . . . . . . . . . . . 13
⊢ (1 + 1) =
2 |
28 | 27 | oveq1i 7294 |
. . . . . . . . . . . 12
⊢ ((1 +
1)...𝑁) = (2...𝑁) |
29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((1 +
1)...𝑁) = (2...𝑁)) |
30 | 26, 29 | difeq12d 4059 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (({1}
∪ ((1 + 1)...𝑁))
∖ ((1 + 1)...𝑁)) =
((1...𝑁) ∖ (2...𝑁))) |
31 | | difun2 4415 |
. . . . . . . . . . 11
⊢ (({1}
∪ ((1 + 1)...𝑁))
∖ ((1 + 1)...𝑁)) =
({1} ∖ ((1 + 1)...𝑁)) |
32 | | fzpreddisj 13314 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅) |
33 | 23, 32 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → ({1}
∩ ((1 + 1)...𝑁)) =
∅) |
34 | | disjdif2 4414 |
. . . . . . . . . . . 12
⊢ (({1}
∩ ((1 + 1)...𝑁)) =
∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1}) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ({1}
∖ ((1 + 1)...𝑁)) =
{1}) |
36 | 31, 35 | eqtrid 2791 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (({1}
∪ ((1 + 1)...𝑁))
∖ ((1 + 1)...𝑁)) =
{1}) |
37 | 30, 36 | eqtr3d 2781 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
((1...𝑁) ∖ (2...𝑁)) = {1}) |
38 | 37 | ineq1d 4146 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(((1...𝑁) ∖
(2...𝑁)) ∩ ℙ) =
({1} ∩ ℙ)) |
39 | | incom 4136 |
. . . . . . . . 9
⊢ (ℙ
∩ {1}) = ({1} ∩ ℙ) |
40 | | 1nprm 16393 |
. . . . . . . . . 10
⊢ ¬ 1
∈ ℙ |
41 | | disjsn 4648 |
. . . . . . . . . 10
⊢ ((ℙ
∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ) |
42 | 40, 41 | mpbir 230 |
. . . . . . . . 9
⊢ (ℙ
∩ {1}) = ∅ |
43 | 39, 42 | eqtr3i 2769 |
. . . . . . . 8
⊢ ({1}
∩ ℙ) = ∅ |
44 | 38, 43 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(((1...𝑁) ∖
(2...𝑁)) ∩ ℙ) =
∅) |
45 | | difininv 30873 |
. . . . . . 7
⊢
(((((2...𝑁) ∖
(1...𝑁)) ∩ ℙ) =
∅ ∧ (((1...𝑁)
∖ (2...𝑁)) ∩
ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ)) |
46 | 22, 44, 45 | syl2anc 584 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
((2...𝑁) ∩ ℙ) =
((1...𝑁) ∩
ℙ)) |
47 | 11, 46 | eqtrd 2779 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((0[,]𝑁) ∩ ℙ) =
((1...𝑁) ∩
ℙ)) |
48 | 47 | adantl 482 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((0[,]𝑁) ∩ ℙ) =
((1...𝑁) ∩
ℙ)) |
49 | | znnnlt1 12356 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (¬
𝑁 ∈ ℕ ↔
𝑁 < 1)) |
50 | 49 | biimpa 477 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ ¬
𝑁 ∈ ℕ) →
𝑁 < 1) |
51 | | incom 4136 |
. . . . . . 7
⊢
((0[,]𝑁) ∩
ℙ) = (ℙ ∩ (0[,]𝑁)) |
52 | | isprm3 16397 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℙ ↔ (𝑛 ∈
(ℤ≥‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖 ∥ 𝑛)) |
53 | 52 | simplbi 498 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℙ → 𝑛 ∈
(ℤ≥‘2)) |
54 | 53 | ssriv 3926 |
. . . . . . . . 9
⊢ ℙ
⊆ (ℤ≥‘2) |
55 | 12 | nnzi 12353 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
56 | | uzssico 31114 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → (ℤ≥‘2) ⊆
(2[,)+∞)) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . 9
⊢
(ℤ≥‘2) ⊆ (2[,)+∞) |
58 | 54, 57 | sstri 3931 |
. . . . . . . 8
⊢ ℙ
⊆ (2[,)+∞) |
59 | | incom 4136 |
. . . . . . . . 9
⊢
((0[,]𝑁) ∩
(2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁)) |
60 | | 0xr 11031 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
61 | 60 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈
ℝ*) |
62 | 12 | nnrei 11991 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
63 | 62 | rexri 11042 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ* |
64 | 63 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈
ℝ*) |
65 | | 0le0 12083 |
. . . . . . . . . . . 12
⊢ 0 ≤
0 |
66 | 65 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤
0) |
67 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈
ℝ) |
68 | | 1red 10985 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈
ℝ) |
69 | 62 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈
ℝ) |
70 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1) |
71 | | 1lt2 12153 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
72 | 71 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 <
2) |
73 | 67, 68, 69, 70, 72 | lttrd 11145 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2) |
74 | | iccssico 13160 |
. . . . . . . . . . 11
⊢ (((0
∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0
∧ 𝑁 < 2)) →
(0[,]𝑁) ⊆
(0[,)2)) |
75 | 61, 64, 66, 73, 74 | syl22anc 836 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆
(0[,)2)) |
76 | | pnfxr 11038 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
77 | | icodisj 13217 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞
∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) =
∅) |
78 | 60, 63, 76, 77 | mp3an 1460 |
. . . . . . . . . 10
⊢ ((0[,)2)
∩ (2[,)+∞)) = ∅ |
79 | | ssdisj 4394 |
. . . . . . . . . 10
⊢
(((0[,]𝑁) ⊆
(0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) =
∅) |
80 | 75, 78, 79 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) =
∅) |
81 | 59, 80 | eqtr3id 2793 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞)
∩ (0[,]𝑁)) =
∅) |
82 | | ssdisj 4394 |
. . . . . . . 8
⊢ ((ℙ
⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩
(0[,]𝑁)) =
∅) |
83 | 58, 81, 82 | sylancr 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩
(0[,]𝑁)) =
∅) |
84 | 51, 83 | eqtrid 2791 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) =
∅) |
85 | | 1zzd 12360 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈
ℤ) |
86 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈
ℤ) |
87 | | fzn 13281 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ) → (𝑁
< 1 ↔ (1...𝑁) =
∅)) |
88 | 87 | biimpa 477 |
. . . . . . . . 9
⊢ (((1
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ 𝑁
< 1) → (1...𝑁) =
∅) |
89 | 85, 86, 70, 88 | syl21anc 835 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅) |
90 | 89 | ineq1d 4146 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅
∩ ℙ)) |
91 | 90, 20 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) =
∅) |
92 | 84, 91 | eqtr4d 2782 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩
ℙ)) |
93 | 50, 92 | syldan 591 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ ¬
𝑁 ∈ ℕ) →
((0[,]𝑁) ∩ ℙ) =
((1...𝑁) ∩
ℙ)) |
94 | | exmidd 893 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈
ℕ)) |
95 | 48, 93, 94 | mpjaodan 956 |
. . 3
⊢ (𝑁 ∈ ℤ →
((0[,]𝑁) ∩ ℙ) =
((1...𝑁) ∩
ℙ)) |
96 | 95 | sumeq1d 15422 |
. 2
⊢ (𝑁 ∈ ℤ →
Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛)) |
97 | 3, 96 | eqtrd 2779 |
1
⊢ (𝑁 ∈ ℤ →
(θ‘𝑁) =
Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛)) |