Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   GIF version

Theorem chtvalz 32618
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Distinct variable group:   𝑛,𝑁

Proof of Theorem chtvalz
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 zre 12332 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 chtval 26268 . . 3 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
31, 2syl 17 . 2 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
4 nnz 12351 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5 ppisval 26262 . . . . . . . . 9 (𝑁 ∈ ℝ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
61, 5syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
7 flid 13537 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
87oveq2d 7300 . . . . . . . . 9 (𝑁 ∈ ℤ → (2...(⌊‘𝑁)) = (2...𝑁))
98ineq1d 4146 . . . . . . . 8 (𝑁 ∈ ℤ → ((2...(⌊‘𝑁)) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
106, 9eqtrd 2779 . . . . . . 7 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
114, 10syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
12 2nn 12055 . . . . . . . . . . . . 13 2 ∈ ℕ
13 nnuz 12630 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1412, 13eleqtri 2838 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
15 fzss1 13304 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
1614, 15ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
17 ssdif0 4298 . . . . . . . . . . 11 ((2...𝑁) ⊆ (1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅)
1816, 17mpbi 229 . . . . . . . . . 10 ((2...𝑁) ∖ (1...𝑁)) = ∅
1918ineq1i 4143 . . . . . . . . 9 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = (∅ ∩ ℙ)
20 0in 4328 . . . . . . . . 9 (∅ ∩ ℙ) = ∅
2119, 20eqtri 2767 . . . . . . . 8 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅)
2313eleq2i 2831 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
24 fzpred 13313 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2523, 24sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2625eqcomd 2745 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∪ ((1 + 1)...𝑁)) = (1...𝑁))
27 1p1e2 12107 . . . . . . . . . . . . 13 (1 + 1) = 2
2827oveq1i 7294 . . . . . . . . . . . 12 ((1 + 1)...𝑁) = (2...𝑁)
2928a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 + 1)...𝑁) = (2...𝑁))
3026, 29difeq12d 4059 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ((1...𝑁) ∖ (2...𝑁)))
31 difun2 4415 . . . . . . . . . . 11 (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ({1} ∖ ((1 + 1)...𝑁))
32 fzpreddisj 13314 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
3323, 32sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
34 disjdif2 4414 . . . . . . . . . . . 12 (({1} ∩ ((1 + 1)...𝑁)) = ∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3533, 34syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3631, 35eqtrid 2791 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = {1})
3730, 36eqtr3d 2781 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1...𝑁) ∖ (2...𝑁)) = {1})
3837ineq1d 4146 . . . . . . . 8 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ({1} ∩ ℙ))
39 incom 4136 . . . . . . . . 9 (ℙ ∩ {1}) = ({1} ∩ ℙ)
40 1nprm 16393 . . . . . . . . . 10 ¬ 1 ∈ ℙ
41 disjsn 4648 . . . . . . . . . 10 ((ℙ ∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ)
4240, 41mpbir 230 . . . . . . . . 9 (ℙ ∩ {1}) = ∅
4339, 42eqtr3i 2769 . . . . . . . 8 ({1} ∩ ℙ) = ∅
4438, 43eqtrdi 2795 . . . . . . 7 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅)
45 difininv 30873 . . . . . . 7 (((((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅ ∧ (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4622, 44, 45syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4711, 46eqtrd 2779 . . . . 5 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4847adantl 482 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
49 znnnlt1 12356 . . . . . 6 (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
5049biimpa 477 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → 𝑁 < 1)
51 incom 4136 . . . . . . 7 ((0[,]𝑁) ∩ ℙ) = (ℙ ∩ (0[,]𝑁))
52 isprm3 16397 . . . . . . . . . . 11 (𝑛 ∈ ℙ ↔ (𝑛 ∈ (ℤ‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖𝑛))
5352simplbi 498 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
5453ssriv 3926 . . . . . . . . 9 ℙ ⊆ (ℤ‘2)
5512nnzi 12353 . . . . . . . . . 10 2 ∈ ℤ
56 uzssico 31114 . . . . . . . . . 10 (2 ∈ ℤ → (ℤ‘2) ⊆ (2[,)+∞))
5755, 56ax-mp 5 . . . . . . . . 9 (ℤ‘2) ⊆ (2[,)+∞)
5854, 57sstri 3931 . . . . . . . 8 ℙ ⊆ (2[,)+∞)
59 incom 4136 . . . . . . . . 9 ((0[,]𝑁) ∩ (2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁))
60 0xr 11031 . . . . . . . . . . . 12 0 ∈ ℝ*
6160a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈ ℝ*)
6212nnrei 11991 . . . . . . . . . . . . 13 2 ∈ ℝ
6362rexri 11042 . . . . . . . . . . . 12 2 ∈ ℝ*
6463a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ*)
65 0le0 12083 . . . . . . . . . . . 12 0 ≤ 0
6665a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤ 0)
671adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℝ)
68 1red 10985 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℝ)
6962a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ)
70 simpr 485 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1)
71 1lt2 12153 . . . . . . . . . . . . 13 1 < 2
7271a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 < 2)
7367, 68, 69, 70, 72lttrd 11145 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2)
74 iccssico 13160 . . . . . . . . . . 11 (((0 ∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑁 < 2)) → (0[,]𝑁) ⊆ (0[,)2))
7561, 64, 66, 73, 74syl22anc 836 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆ (0[,)2))
76 pnfxr 11038 . . . . . . . . . . 11 +∞ ∈ ℝ*
77 icodisj 13217 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) = ∅)
7860, 63, 76, 77mp3an 1460 . . . . . . . . . 10 ((0[,)2) ∩ (2[,)+∞)) = ∅
79 ssdisj 4394 . . . . . . . . . 10 (((0[,]𝑁) ⊆ (0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8075, 78, 79sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8159, 80eqtr3id 2793 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞) ∩ (0[,]𝑁)) = ∅)
82 ssdisj 4394 . . . . . . . 8 ((ℙ ⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩ (0[,]𝑁)) = ∅)
8358, 81, 82sylancr 587 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩ (0[,]𝑁)) = ∅)
8451, 83eqtrid 2791 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ∅)
85 1zzd 12360 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℤ)
86 simpl 483 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℤ)
87 fzn 13281 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅))
8887biimpa 477 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 1) → (1...𝑁) = ∅)
8985, 86, 70, 88syl21anc 835 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅)
9089ineq1d 4146 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅ ∩ ℙ))
9190, 20eqtrdi 2795 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = ∅)
9284, 91eqtr4d 2782 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9350, 92syldan 591 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
94 exmidd 893 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ))
9548, 93, 94mpjaodan 956 . . 3 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9695sumeq1d 15422 . 2 (𝑁 ∈ ℤ → Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
973, 96eqtrd 2779 1 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2107  wral 3065  cdif 3885  cun 3886  cin 3887  wss 3888  c0 4257  {csn 4562   class class class wbr 5075  cfv 6437  (class class class)co 7284  cr 10879  0cc0 10880  1c1 10881   + caddc 10883  +∞cpnf 11015  *cxr 11017   < clt 11018  cle 11019  cmin 11214  cn 11982  2c2 12037  cz 12328  cuz 12591  [,)cico 13090  [,]cicc 13091  ...cfz 13248  cfl 13519  Σcsu 15406  cdvds 15972  cprime 16385  logclog 25719  θccht 26249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-ico 13094  df-icc 13095  df-fz 13249  df-fl 13521  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-sum 15407  df-dvds 15973  df-prm 16386  df-cht 26255
This theorem is referenced by:  hgt750lemd  32637
  Copyright terms: Public domain W3C validator