Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  chtvalz Structured version   Visualization version   GIF version

Theorem chtvalz 31158
Description: Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.)
Assertion
Ref Expression
chtvalz (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Distinct variable group:   𝑛,𝑁

Proof of Theorem chtvalz
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 zre 11628 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 chtval 25127 . . 3 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
31, 2syl 17 . 2 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛))
4 nnz 11646 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5 ppisval 25121 . . . . . . . . 9 (𝑁 ∈ ℝ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
61, 5syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...(⌊‘𝑁)) ∩ ℙ))
7 flid 12817 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
87oveq2d 6858 . . . . . . . . 9 (𝑁 ∈ ℤ → (2...(⌊‘𝑁)) = (2...𝑁))
98ineq1d 3975 . . . . . . . 8 (𝑁 ∈ ℤ → ((2...(⌊‘𝑁)) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
106, 9eqtrd 2799 . . . . . . 7 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
114, 10syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((2...𝑁) ∩ ℙ))
12 2nn 11345 . . . . . . . . . . . . 13 2 ∈ ℕ
13 nnuz 11923 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1412, 13eleqtri 2842 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
15 fzss1 12587 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
1614, 15ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
17 ssdif0 4106 . . . . . . . . . . 11 ((2...𝑁) ⊆ (1...𝑁) ↔ ((2...𝑁) ∖ (1...𝑁)) = ∅)
1816, 17mpbi 221 . . . . . . . . . 10 ((2...𝑁) ∖ (1...𝑁)) = ∅
1918ineq1i 3972 . . . . . . . . 9 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = (∅ ∩ ℙ)
20 0in 4131 . . . . . . . . 9 (∅ ∩ ℙ) = ∅
2119, 20eqtri 2787 . . . . . . . 8 (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → (((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅)
2313eleq2i 2836 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
24 fzpred 12596 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2523, 24sylbi 208 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁)))
2625eqcomd 2771 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∪ ((1 + 1)...𝑁)) = (1...𝑁))
27 1p1e2 11404 . . . . . . . . . . . . 13 (1 + 1) = 2
2827oveq1i 6852 . . . . . . . . . . . 12 ((1 + 1)...𝑁) = (2...𝑁)
2928a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 + 1)...𝑁) = (2...𝑁))
3026, 29difeq12d 3891 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ((1...𝑁) ∖ (2...𝑁)))
31 difun2 4208 . . . . . . . . . . 11 (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = ({1} ∖ ((1 + 1)...𝑁))
32 fzpreddisj 12597 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘1) → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
3323, 32sylbi 208 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ({1} ∩ ((1 + 1)...𝑁)) = ∅)
34 disjdif2 4207 . . . . . . . . . . . 12 (({1} ∩ ((1 + 1)...𝑁)) = ∅ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3533, 34syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ({1} ∖ ((1 + 1)...𝑁)) = {1})
3631, 35syl5eq 2811 . . . . . . . . . 10 (𝑁 ∈ ℕ → (({1} ∪ ((1 + 1)...𝑁)) ∖ ((1 + 1)...𝑁)) = {1})
3730, 36eqtr3d 2801 . . . . . . . . 9 (𝑁 ∈ ℕ → ((1...𝑁) ∖ (2...𝑁)) = {1})
3837ineq1d 3975 . . . . . . . 8 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ({1} ∩ ℙ))
39 incom 3967 . . . . . . . . 9 (ℙ ∩ {1}) = ({1} ∩ ℙ)
40 1nprm 15672 . . . . . . . . . 10 ¬ 1 ∈ ℙ
41 disjsn 4402 . . . . . . . . . 10 ((ℙ ∩ {1}) = ∅ ↔ ¬ 1 ∈ ℙ)
4240, 41mpbir 222 . . . . . . . . 9 (ℙ ∩ {1}) = ∅
4339, 42eqtr3i 2789 . . . . . . . 8 ({1} ∩ ℙ) = ∅
4438, 43syl6eq 2815 . . . . . . 7 (𝑁 ∈ ℕ → (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅)
45 difininv 29803 . . . . . . 7 (((((2...𝑁) ∖ (1...𝑁)) ∩ ℙ) = ∅ ∧ (((1...𝑁) ∖ (2...𝑁)) ∩ ℙ) = ∅) → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4622, 44, 45syl2anc 579 . . . . . 6 (𝑁 ∈ ℕ → ((2...𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4711, 46eqtrd 2799 . . . . 5 (𝑁 ∈ ℕ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
4847adantl 473 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
49 znnnlt1 11651 . . . . . 6 (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1))
5049biimpa 468 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → 𝑁 < 1)
51 incom 3967 . . . . . . 7 ((0[,]𝑁) ∩ ℙ) = (ℙ ∩ (0[,]𝑁))
52 isprm3 15676 . . . . . . . . . . 11 (𝑛 ∈ ℙ ↔ (𝑛 ∈ (ℤ‘2) ∧ ∀𝑖 ∈ (2...(𝑛 − 1)) ¬ 𝑖𝑛))
5352simplbi 491 . . . . . . . . . 10 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
5453ssriv 3765 . . . . . . . . 9 ℙ ⊆ (ℤ‘2)
5512nnzi 11648 . . . . . . . . . 10 2 ∈ ℤ
56 uzssico 29995 . . . . . . . . . 10 (2 ∈ ℤ → (ℤ‘2) ⊆ (2[,)+∞))
5755, 56ax-mp 5 . . . . . . . . 9 (ℤ‘2) ⊆ (2[,)+∞)
5854, 57sstri 3770 . . . . . . . 8 ℙ ⊆ (2[,)+∞)
59 incom 3967 . . . . . . . . 9 ((0[,]𝑁) ∩ (2[,)+∞)) = ((2[,)+∞) ∩ (0[,]𝑁))
60 0xr 10340 . . . . . . . . . . . 12 0 ∈ ℝ*
6160a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ∈ ℝ*)
6212nnrei 11284 . . . . . . . . . . . . 13 2 ∈ ℝ
6362rexri 10351 . . . . . . . . . . . 12 2 ∈ ℝ*
6463a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ*)
65 0le0 11380 . . . . . . . . . . . 12 0 ≤ 0
6665a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 0 ≤ 0)
671adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℝ)
68 1red 10294 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℝ)
6962a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 2 ∈ ℝ)
70 simpr 477 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 1)
71 1lt2 11449 . . . . . . . . . . . . 13 1 < 2
7271a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 < 2)
7367, 68, 69, 70, 72lttrd 10452 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 < 2)
74 iccssico 12447 . . . . . . . . . . 11 (((0 ∈ ℝ* ∧ 2 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑁 < 2)) → (0[,]𝑁) ⊆ (0[,)2))
7561, 64, 66, 73, 74syl22anc 867 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (0[,]𝑁) ⊆ (0[,)2))
76 pnfxr 10346 . . . . . . . . . . 11 +∞ ∈ ℝ*
77 icodisj 12502 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((0[,)2) ∩ (2[,)+∞)) = ∅)
7860, 63, 76, 77mp3an 1585 . . . . . . . . . 10 ((0[,)2) ∩ (2[,)+∞)) = ∅
79 ssdisj 4188 . . . . . . . . . 10 (((0[,]𝑁) ⊆ (0[,)2) ∧ ((0[,)2) ∩ (2[,)+∞)) = ∅) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8075, 78, 79sylancl 580 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ (2[,)+∞)) = ∅)
8159, 80syl5eqr 2813 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((2[,)+∞) ∩ (0[,]𝑁)) = ∅)
82 ssdisj 4188 . . . . . . . 8 ((ℙ ⊆ (2[,)+∞) ∧ ((2[,)+∞) ∩ (0[,]𝑁)) = ∅) → (ℙ ∩ (0[,]𝑁)) = ∅)
8358, 81, 82sylancr 581 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (ℙ ∩ (0[,]𝑁)) = ∅)
8451, 83syl5eq 2811 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ∅)
85 1zzd 11655 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 1 ∈ ℤ)
86 simpl 474 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → 𝑁 ∈ ℤ)
87 fzn 12564 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 1 ↔ (1...𝑁) = ∅))
8887biimpa 468 . . . . . . . . 9 (((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 1) → (1...𝑁) = ∅)
8985, 86, 70, 88syl21anc 866 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → (1...𝑁) = ∅)
9089ineq1d 3975 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = (∅ ∩ ℙ))
9190, 20syl6eq 2815 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((1...𝑁) ∩ ℙ) = ∅)
9284, 91eqtr4d 2802 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑁 < 1) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9350, 92syldan 585 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ) → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
94 exmidd 919 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ ∨ ¬ 𝑁 ∈ ℕ))
9548, 93, 94mpjaodan 981 . . 3 (𝑁 ∈ ℤ → ((0[,]𝑁) ∩ ℙ) = ((1...𝑁) ∩ ℙ))
9695sumeq1d 14716 . 2 (𝑁 ∈ ℤ → Σ𝑛 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑛) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
973, 96eqtrd 2799 1 (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  cdif 3729  cun 3730  cin 3731  wss 3732  c0 4079  {csn 4334   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  cmin 10520  cn 11274  2c2 11327  cz 11624  cuz 11886  [,)cico 12379  [,]cicc 12380  ...cfz 12533  cfl 12799  Σcsu 14701  cdvds 15265  cprime 15665  logclog 24592  θccht 25108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-icc 12384  df-fz 12534  df-fl 12801  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-sum 14702  df-dvds 15266  df-prm 15666  df-cht 25114
This theorem is referenced by:  hgt750lemd  31177
  Copyright terms: Public domain W3C validator