| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabxm | Structured version Visualization version GIF version | ||
| Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabxm | ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2im 3429 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) | |
| 2 | exmidd 895 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) | |
| 3 | 1, 2 | mprg 3055 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} |
| 4 | unrab 4266 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
| 5 | 3, 4 | eqtr4i 2759 | 1 ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {crab 3397 ∪ cun 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rab 3398 df-v 3440 df-un 3904 |
| This theorem is referenced by: elnelun 4344 vtxdgoddnumeven 29543 esumrnmpt2 34092 ddemeas 34260 ballotth 34562 mbfposadd 37717 jm2.22 43102 |
| Copyright terms: Public domain | W3C validator |