MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxm Structured version   Visualization version   GIF version

Theorem rabxm 4386
Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabxm 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxm
StepHypRef Expression
1 rabid2 3463 . . 3 (𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑))
2 exmidd 893 . . 3 (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑))
31, 2mprgbir 3067 . 2 𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
4 unrab 4305 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
53, 4eqtr4i 2762 1 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1540  wcel 2105  {crab 3431  cun 3946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rab 3432  df-v 3475  df-un 3953
This theorem is referenced by:  elnelun  4389  vtxdgoddnumeven  29244  esumrnmpt2  33531  ddemeas  33699  ballotth  34001  mbfposadd  37001  jm2.22  42199
  Copyright terms: Public domain W3C validator