![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabxm | Structured version Visualization version GIF version |
Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
rabxm | ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2im 3477 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) | |
2 | exmidd 894 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) | |
3 | 1, 2 | mprg 3073 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} |
4 | unrab 4334 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
5 | 3, 4 | eqtr4i 2771 | 1 ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {crab 3443 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-un 3981 |
This theorem is referenced by: elnelun 4416 vtxdgoddnumeven 29589 esumrnmpt2 34032 ddemeas 34200 ballotth 34502 mbfposadd 37627 jm2.22 42952 |
Copyright terms: Public domain | W3C validator |