| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabxm | Structured version Visualization version GIF version | ||
| Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabxm | ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2im 3425 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑) → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}) | |
| 2 | exmidd 895 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) | |
| 3 | 1, 2 | mprg 3051 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} |
| 4 | unrab 4263 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
| 5 | 3, 4 | eqtr4i 2756 | 1 ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2110 {crab 3393 ∪ cun 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-un 3905 |
| This theorem is referenced by: elnelun 4341 vtxdgoddnumeven 29525 esumrnmpt2 34071 ddemeas 34239 ballotth 34541 mbfposadd 37686 jm2.22 43007 |
| Copyright terms: Public domain | W3C validator |