Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabxm | Structured version Visualization version GIF version |
Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
rabxm | ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3312 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∨ ¬ 𝜑)) | |
2 | exmidd 892 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑)) | |
3 | 1, 2 | mprgbir 3080 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} |
4 | unrab 4244 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ ¬ 𝜑)} | |
5 | 3, 4 | eqtr4i 2770 | 1 ⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1541 ∈ wcel 2109 {crab 3069 ∪ cun 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rab 3074 df-v 3432 df-un 3896 |
This theorem is referenced by: elnelun 4328 vtxdgoddnumeven 27901 esumrnmpt2 32015 ddemeas 32183 ballotth 32483 mbfposadd 35803 jm2.22 40797 |
Copyright terms: Public domain | W3C validator |