MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxm Structured version   Visualization version   GIF version

Theorem rabxm 4413
Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabxm 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxm
StepHypRef Expression
1 rabid2im 3477 . . 3 (∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑) → 𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)})
2 exmidd 894 . . 3 (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑))
31, 2mprg 3073 . 2 𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
4 unrab 4334 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
53, 4eqtr4i 2771 1 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  {crab 3443  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-un 3981
This theorem is referenced by:  elnelun  4416  vtxdgoddnumeven  29589  esumrnmpt2  34032  ddemeas  34200  ballotth  34502  mbfposadd  37627  jm2.22  42952
  Copyright terms: Public domain W3C validator