MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxm Structured version   Visualization version   GIF version

Theorem rabxm 4341
Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabxm 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabxm
StepHypRef Expression
1 rabid2im 3429 . . 3 (∀𝑥𝐴 (𝜑 ∨ ¬ 𝜑) → 𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)})
2 exmidd 895 . . 3 (𝑥𝐴 → (𝜑 ∨ ¬ 𝜑))
31, 2mprg 3055 . 2 𝐴 = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
4 unrab 4266 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∨ ¬ 𝜑)}
53, 4eqtr4i 2759 1 𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  {crab 3397  cun 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rab 3398  df-v 3440  df-un 3904
This theorem is referenced by:  elnelun  4344  vtxdgoddnumeven  29543  esumrnmpt2  34092  ddemeas  34260  ballotth  34562  mbfposadd  37717  jm2.22  43102
  Copyright terms: Public domain W3C validator