MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Visualization version   GIF version

Theorem fgcl 23901
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))

Proof of Theorem fgcl
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23894 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑧 ∈ (𝑋filGen𝐹) ↔ (𝑧𝑋 ∧ ∃𝑦𝐹 𝑦𝑧)))
2 elfvex 6944 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
3 fbasne0 23853 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
4 n0 4358 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑦 𝑦𝐹)
53, 4sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦 𝑦𝐹)
6 fbelss 23856 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
76ex 412 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹𝑦𝑋))
87ancld 550 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹 → (𝑦𝐹𝑦𝑋)))
98eximdv 1914 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑦 𝑦𝐹 → ∃𝑦(𝑦𝐹𝑦𝑋)))
105, 9mpd 15 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦(𝑦𝐹𝑦𝑋))
11 df-rex 3068 . . . 4 (∃𝑦𝐹 𝑦𝑋 ↔ ∃𝑦(𝑦𝐹𝑦𝑋))
1210, 11sylibr 234 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦𝐹 𝑦𝑋)
13 elfvdm 6943 . . . 4 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
14 sseq2 4021 . . . . . 6 (𝑧 = 𝑋 → (𝑦𝑧𝑦𝑋))
1514rexbidv 3176 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1615sbcieg 3831 . . . 4 (𝑋 ∈ dom fBas → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1713, 16syl 17 . . 3 (𝐹 ∈ (fBas‘𝑋) → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1812, 17mpbird 257 . 2 (𝐹 ∈ (fBas‘𝑋) → [𝑋 / 𝑧]𝑦𝐹 𝑦𝑧)
19 0nelfb 23854 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
20 0ex 5312 . . . . 5 ∅ ∈ V
21 sseq2 4021 . . . . . 6 (𝑧 = ∅ → (𝑦𝑧𝑦 ⊆ ∅))
2221rexbidv 3176 . . . . 5 (𝑧 = ∅ → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅))
2320, 22sbcie 3834 . . . 4 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅)
24 ss0 4407 . . . . . . 7 (𝑦 ⊆ ∅ → 𝑦 = ∅)
2524eleq1d 2823 . . . . . 6 (𝑦 ⊆ ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
2625biimpac 478 . . . . 5 ((𝑦𝐹𝑦 ⊆ ∅) → ∅ ∈ 𝐹)
2726rexlimiva 3144 . . . 4 (∃𝑦𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹)
2823, 27sylbi 217 . . 3 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 → ∅ ∈ 𝐹)
2919, 28nsyl 140 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ [∅ / 𝑧]𝑦𝐹 𝑦𝑧)
30 sstr 4003 . . . . . 6 ((𝑦𝑣𝑣𝑢) → 𝑦𝑢)
3130expcom 413 . . . . 5 (𝑣𝑢 → (𝑦𝑣𝑦𝑢))
3231reximdv 3167 . . . 4 (𝑣𝑢 → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
33323ad2ant3 1134 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
34 vex 3481 . . . 4 𝑣 ∈ V
35 sseq2 4021 . . . . 5 (𝑧 = 𝑣 → (𝑦𝑧𝑦𝑣))
3635rexbidv 3176 . . . 4 (𝑧 = 𝑣 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣))
3734, 36sbcie 3834 . . 3 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣)
38 vex 3481 . . . 4 𝑢 ∈ V
39 sseq2 4021 . . . . 5 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
4039rexbidv 3176 . . . 4 (𝑧 = 𝑢 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢))
4138, 40sbcie 3834 . . 3 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢)
4233, 37, 413imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧[𝑢 / 𝑧]𝑦𝐹 𝑦𝑧))
43 fbasssin 23859 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤))
44433expib 1121 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤)))
45 sstr2 4001 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑦 ⊆ (𝑢𝑣)))
4645com12 32 . . . . . . . . . . . . 13 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑦 ⊆ (𝑧𝑤) → 𝑦 ⊆ (𝑢𝑣)))
4746reximdv 3167 . . . . . . . . . . . 12 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
48 ss2in 4252 . . . . . . . . . . . 12 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
4947, 48syl11 33 . . . . . . . . . . 11 (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5044, 49syl6 35 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5150exp5c 444 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑧𝐹 → (𝑤𝐹 → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))))
5251imp31 417 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑤𝐹) → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5352impancom 451 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (𝑤𝐹 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5453rexlimdv 3150 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5554rexlimdva2 3154 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑧𝐹 𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5655impd 410 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
57563ad2ant1 1132 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
58 sseq1 4020 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
5958cbvrexvw 3235 . . . . 5 (∃𝑦𝐹 𝑦𝑢 ↔ ∃𝑧𝐹 𝑧𝑢)
6041, 59bitri 275 . . . 4 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑧𝐹 𝑧𝑢)
61 sseq1 4020 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
6261cbvrexvw 3235 . . . . 5 (∃𝑦𝐹 𝑦𝑣 ↔ ∃𝑤𝐹 𝑤𝑣)
6337, 62bitri 275 . . . 4 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑤𝐹 𝑤𝑣)
6460, 63anbi12i 628 . . 3 (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) ↔ (∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣))
6538inex1 5322 . . . 4 (𝑢𝑣) ∈ V
66 sseq2 4021 . . . . 5 (𝑧 = (𝑢𝑣) → (𝑦𝑧𝑦 ⊆ (𝑢𝑣)))
6766rexbidv 3176 . . . 4 (𝑧 = (𝑢𝑣) → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
6865, 67sbcie 3834 . . 3 ([(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))
6957, 64, 683imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) → [(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧))
701, 2, 18, 29, 42, 69isfild 23881 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067  Vcvv 3477  [wsbc 3790  cin 3961  wss 3962  c0 4338  dom cdm 5688  cfv 6562  (class class class)co 7430  fBascfbas 21369  filGencfg 21370  Filcfil 23868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-fbas 21378  df-fg 21379  df-fil 23869
This theorem is referenced by:  fgabs  23902  trfg  23914  isufil2  23931  ssufl  23941  ufileu  23942  filufint  23943  fixufil  23945  uffixfr  23946  fmfil  23967  fmfg  23972  elfm3  23973  rnelfm  23976  fmfnfmlem2  23978  fmfnfm  23981  fbflim  23999  hausflim  24004  flimclslem  24007  flffbas  24018  fclsbas  24044  fclsfnflim  24050  flimfnfcls  24051  fclscmp  24053  haustsms  24159  tsmscls  24161  tsmsmhm  24169  tsmsadd  24170  cfilufg  24317  metust  24586  fgcfil  25318  cmetcaulem  25335  cmetss  25363  minveclem4a  25477  minveclem4  25479
  Copyright terms: Public domain W3C validator