MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Visualization version   GIF version

Theorem fgcl 23772
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))

Proof of Theorem fgcl
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23765 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑧 ∈ (𝑋filGen𝐹) ↔ (𝑧𝑋 ∧ ∃𝑦𝐹 𝑦𝑧)))
2 elfvex 6899 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
3 fbasne0 23724 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
4 n0 4319 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑦 𝑦𝐹)
53, 4sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦 𝑦𝐹)
6 fbelss 23727 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
76ex 412 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹𝑦𝑋))
87ancld 550 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹 → (𝑦𝐹𝑦𝑋)))
98eximdv 1917 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑦 𝑦𝐹 → ∃𝑦(𝑦𝐹𝑦𝑋)))
105, 9mpd 15 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦(𝑦𝐹𝑦𝑋))
11 df-rex 3055 . . . 4 (∃𝑦𝐹 𝑦𝑋 ↔ ∃𝑦(𝑦𝐹𝑦𝑋))
1210, 11sylibr 234 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦𝐹 𝑦𝑋)
13 elfvdm 6898 . . . 4 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
14 sseq2 3976 . . . . . 6 (𝑧 = 𝑋 → (𝑦𝑧𝑦𝑋))
1514rexbidv 3158 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1615sbcieg 3796 . . . 4 (𝑋 ∈ dom fBas → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1713, 16syl 17 . . 3 (𝐹 ∈ (fBas‘𝑋) → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1812, 17mpbird 257 . 2 (𝐹 ∈ (fBas‘𝑋) → [𝑋 / 𝑧]𝑦𝐹 𝑦𝑧)
19 0nelfb 23725 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
20 0ex 5265 . . . . 5 ∅ ∈ V
21 sseq2 3976 . . . . . 6 (𝑧 = ∅ → (𝑦𝑧𝑦 ⊆ ∅))
2221rexbidv 3158 . . . . 5 (𝑧 = ∅ → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅))
2320, 22sbcie 3798 . . . 4 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅)
24 ss0 4368 . . . . . . 7 (𝑦 ⊆ ∅ → 𝑦 = ∅)
2524eleq1d 2814 . . . . . 6 (𝑦 ⊆ ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
2625biimpac 478 . . . . 5 ((𝑦𝐹𝑦 ⊆ ∅) → ∅ ∈ 𝐹)
2726rexlimiva 3127 . . . 4 (∃𝑦𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹)
2823, 27sylbi 217 . . 3 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 → ∅ ∈ 𝐹)
2919, 28nsyl 140 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ [∅ / 𝑧]𝑦𝐹 𝑦𝑧)
30 sstr 3958 . . . . . 6 ((𝑦𝑣𝑣𝑢) → 𝑦𝑢)
3130expcom 413 . . . . 5 (𝑣𝑢 → (𝑦𝑣𝑦𝑢))
3231reximdv 3149 . . . 4 (𝑣𝑢 → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
33323ad2ant3 1135 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
34 vex 3454 . . . 4 𝑣 ∈ V
35 sseq2 3976 . . . . 5 (𝑧 = 𝑣 → (𝑦𝑧𝑦𝑣))
3635rexbidv 3158 . . . 4 (𝑧 = 𝑣 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣))
3734, 36sbcie 3798 . . 3 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣)
38 vex 3454 . . . 4 𝑢 ∈ V
39 sseq2 3976 . . . . 5 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
4039rexbidv 3158 . . . 4 (𝑧 = 𝑢 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢))
4138, 40sbcie 3798 . . 3 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢)
4233, 37, 413imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧[𝑢 / 𝑧]𝑦𝐹 𝑦𝑧))
43 fbasssin 23730 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤))
44433expib 1122 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤)))
45 sstr2 3956 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑦 ⊆ (𝑢𝑣)))
4645com12 32 . . . . . . . . . . . . 13 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑦 ⊆ (𝑧𝑤) → 𝑦 ⊆ (𝑢𝑣)))
4746reximdv 3149 . . . . . . . . . . . 12 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
48 ss2in 4211 . . . . . . . . . . . 12 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
4947, 48syl11 33 . . . . . . . . . . 11 (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5044, 49syl6 35 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5150exp5c 444 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑧𝐹 → (𝑤𝐹 → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))))
5251imp31 417 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑤𝐹) → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5352impancom 451 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (𝑤𝐹 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5453rexlimdv 3133 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5554rexlimdva2 3137 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑧𝐹 𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5655impd 410 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
57563ad2ant1 1133 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
58 sseq1 3975 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
5958cbvrexvw 3217 . . . . 5 (∃𝑦𝐹 𝑦𝑢 ↔ ∃𝑧𝐹 𝑧𝑢)
6041, 59bitri 275 . . . 4 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑧𝐹 𝑧𝑢)
61 sseq1 3975 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
6261cbvrexvw 3217 . . . . 5 (∃𝑦𝐹 𝑦𝑣 ↔ ∃𝑤𝐹 𝑤𝑣)
6337, 62bitri 275 . . . 4 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑤𝐹 𝑤𝑣)
6460, 63anbi12i 628 . . 3 (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) ↔ (∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣))
6538inex1 5275 . . . 4 (𝑢𝑣) ∈ V
66 sseq2 3976 . . . . 5 (𝑧 = (𝑢𝑣) → (𝑦𝑧𝑦 ⊆ (𝑢𝑣)))
6766rexbidv 3158 . . . 4 (𝑧 = (𝑢𝑣) → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
6865, 67sbcie 3798 . . 3 ([(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))
6957, 64, 683imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) → [(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧))
701, 2, 18, 29, 42, 69isfild 23752 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  [wsbc 3756  cin 3916  wss 3917  c0 4299  dom cdm 5641  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260  Filcfil 23739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-fg 21269  df-fil 23740
This theorem is referenced by:  fgabs  23773  trfg  23785  isufil2  23802  ssufl  23812  ufileu  23813  filufint  23814  fixufil  23816  uffixfr  23817  fmfil  23838  fmfg  23843  elfm3  23844  rnelfm  23847  fmfnfmlem2  23849  fmfnfm  23852  fbflim  23870  hausflim  23875  flimclslem  23878  flffbas  23889  fclsbas  23915  fclsfnflim  23921  flimfnfcls  23922  fclscmp  23924  haustsms  24030  tsmscls  24032  tsmsmhm  24040  tsmsadd  24041  cfilufg  24187  metust  24453  fgcfil  25178  cmetcaulem  25195  cmetss  25223  minveclem4a  25337  minveclem4  25339
  Copyright terms: Public domain W3C validator