MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Visualization version   GIF version

Theorem fgcl 23907
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))

Proof of Theorem fgcl
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23900 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑧 ∈ (𝑋filGen𝐹) ↔ (𝑧𝑋 ∧ ∃𝑦𝐹 𝑦𝑧)))
2 elfvex 6958 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
3 fbasne0 23859 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
4 n0 4376 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑦 𝑦𝐹)
53, 4sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦 𝑦𝐹)
6 fbelss 23862 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
76ex 412 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹𝑦𝑋))
87ancld 550 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹 → (𝑦𝐹𝑦𝑋)))
98eximdv 1916 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑦 𝑦𝐹 → ∃𝑦(𝑦𝐹𝑦𝑋)))
105, 9mpd 15 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦(𝑦𝐹𝑦𝑋))
11 df-rex 3077 . . . 4 (∃𝑦𝐹 𝑦𝑋 ↔ ∃𝑦(𝑦𝐹𝑦𝑋))
1210, 11sylibr 234 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦𝐹 𝑦𝑋)
13 elfvdm 6957 . . . 4 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
14 sseq2 4035 . . . . . 6 (𝑧 = 𝑋 → (𝑦𝑧𝑦𝑋))
1514rexbidv 3185 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1615sbcieg 3845 . . . 4 (𝑋 ∈ dom fBas → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1713, 16syl 17 . . 3 (𝐹 ∈ (fBas‘𝑋) → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1812, 17mpbird 257 . 2 (𝐹 ∈ (fBas‘𝑋) → [𝑋 / 𝑧]𝑦𝐹 𝑦𝑧)
19 0nelfb 23860 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
20 0ex 5325 . . . . 5 ∅ ∈ V
21 sseq2 4035 . . . . . 6 (𝑧 = ∅ → (𝑦𝑧𝑦 ⊆ ∅))
2221rexbidv 3185 . . . . 5 (𝑧 = ∅ → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅))
2320, 22sbcie 3848 . . . 4 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅)
24 ss0 4425 . . . . . . 7 (𝑦 ⊆ ∅ → 𝑦 = ∅)
2524eleq1d 2829 . . . . . 6 (𝑦 ⊆ ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
2625biimpac 478 . . . . 5 ((𝑦𝐹𝑦 ⊆ ∅) → ∅ ∈ 𝐹)
2726rexlimiva 3153 . . . 4 (∃𝑦𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹)
2823, 27sylbi 217 . . 3 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 → ∅ ∈ 𝐹)
2919, 28nsyl 140 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ [∅ / 𝑧]𝑦𝐹 𝑦𝑧)
30 sstr 4017 . . . . . 6 ((𝑦𝑣𝑣𝑢) → 𝑦𝑢)
3130expcom 413 . . . . 5 (𝑣𝑢 → (𝑦𝑣𝑦𝑢))
3231reximdv 3176 . . . 4 (𝑣𝑢 → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
33323ad2ant3 1135 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
34 vex 3492 . . . 4 𝑣 ∈ V
35 sseq2 4035 . . . . 5 (𝑧 = 𝑣 → (𝑦𝑧𝑦𝑣))
3635rexbidv 3185 . . . 4 (𝑧 = 𝑣 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣))
3734, 36sbcie 3848 . . 3 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣)
38 vex 3492 . . . 4 𝑢 ∈ V
39 sseq2 4035 . . . . 5 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
4039rexbidv 3185 . . . 4 (𝑧 = 𝑢 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢))
4138, 40sbcie 3848 . . 3 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢)
4233, 37, 413imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧[𝑢 / 𝑧]𝑦𝐹 𝑦𝑧))
43 fbasssin 23865 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤))
44433expib 1122 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤)))
45 sstr2 4015 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑦 ⊆ (𝑢𝑣)))
4645com12 32 . . . . . . . . . . . . 13 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑦 ⊆ (𝑧𝑤) → 𝑦 ⊆ (𝑢𝑣)))
4746reximdv 3176 . . . . . . . . . . . 12 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
48 ss2in 4266 . . . . . . . . . . . 12 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
4947, 48syl11 33 . . . . . . . . . . 11 (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5044, 49syl6 35 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5150exp5c 444 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑧𝐹 → (𝑤𝐹 → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))))
5251imp31 417 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑤𝐹) → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5352impancom 451 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (𝑤𝐹 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5453rexlimdv 3159 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5554rexlimdva2 3163 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑧𝐹 𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5655impd 410 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
57563ad2ant1 1133 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
58 sseq1 4034 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
5958cbvrexvw 3244 . . . . 5 (∃𝑦𝐹 𝑦𝑢 ↔ ∃𝑧𝐹 𝑧𝑢)
6041, 59bitri 275 . . . 4 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑧𝐹 𝑧𝑢)
61 sseq1 4034 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
6261cbvrexvw 3244 . . . . 5 (∃𝑦𝐹 𝑦𝑣 ↔ ∃𝑤𝐹 𝑤𝑣)
6337, 62bitri 275 . . . 4 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑤𝐹 𝑤𝑣)
6460, 63anbi12i 627 . . 3 (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) ↔ (∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣))
6538inex1 5335 . . . 4 (𝑢𝑣) ∈ V
66 sseq2 4035 . . . . 5 (𝑧 = (𝑢𝑣) → (𝑦𝑧𝑦 ⊆ (𝑢𝑣)))
6766rexbidv 3185 . . . 4 (𝑧 = (𝑢𝑣) → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
6865, 67sbcie 3848 . . 3 ([(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))
6957, 64, 683imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) → [(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧))
701, 2, 18, 29, 42, 69isfild 23887 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  [wsbc 3804  cin 3975  wss 3976  c0 4352  dom cdm 5700  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-fil 23875
This theorem is referenced by:  fgabs  23908  trfg  23920  isufil2  23937  ssufl  23947  ufileu  23948  filufint  23949  fixufil  23951  uffixfr  23952  fmfil  23973  fmfg  23978  elfm3  23979  rnelfm  23982  fmfnfmlem2  23984  fmfnfm  23987  fbflim  24005  hausflim  24010  flimclslem  24013  flffbas  24024  fclsbas  24050  fclsfnflim  24056  flimfnfcls  24057  fclscmp  24059  haustsms  24165  tsmscls  24167  tsmsmhm  24175  tsmsadd  24176  cfilufg  24323  metust  24592  fgcfil  25324  cmetcaulem  25341  cmetss  25369  minveclem4a  25483  minveclem4  25485
  Copyright terms: Public domain W3C validator