MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgcl Structured version   Visualization version   GIF version

Theorem fgcl 23887
Description: A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgcl (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))

Proof of Theorem fgcl
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23880 . 2 (𝐹 ∈ (fBas‘𝑋) → (𝑧 ∈ (𝑋filGen𝐹) ↔ (𝑧𝑋 ∧ ∃𝑦𝐹 𝑦𝑧)))
2 elfvex 6943 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ V)
3 fbasne0 23839 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
4 n0 4352 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑦 𝑦𝐹)
53, 4sylib 218 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦 𝑦𝐹)
6 fbelss 23842 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
76ex 412 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹𝑦𝑋))
87ancld 550 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝑦𝐹 → (𝑦𝐹𝑦𝑋)))
98eximdv 1916 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑦 𝑦𝐹 → ∃𝑦(𝑦𝐹𝑦𝑋)))
105, 9mpd 15 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦(𝑦𝐹𝑦𝑋))
11 df-rex 3070 . . . 4 (∃𝑦𝐹 𝑦𝑋 ↔ ∃𝑦(𝑦𝐹𝑦𝑋))
1210, 11sylibr 234 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∃𝑦𝐹 𝑦𝑋)
13 elfvdm 6942 . . . 4 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
14 sseq2 4009 . . . . . 6 (𝑧 = 𝑋 → (𝑦𝑧𝑦𝑋))
1514rexbidv 3178 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1615sbcieg 3827 . . . 4 (𝑋 ∈ dom fBas → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1713, 16syl 17 . . 3 (𝐹 ∈ (fBas‘𝑋) → ([𝑋 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑋))
1812, 17mpbird 257 . 2 (𝐹 ∈ (fBas‘𝑋) → [𝑋 / 𝑧]𝑦𝐹 𝑦𝑧)
19 0nelfb 23840 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
20 0ex 5306 . . . . 5 ∅ ∈ V
21 sseq2 4009 . . . . . 6 (𝑧 = ∅ → (𝑦𝑧𝑦 ⊆ ∅))
2221rexbidv 3178 . . . . 5 (𝑧 = ∅ → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅))
2320, 22sbcie 3829 . . . 4 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ ∅)
24 ss0 4401 . . . . . . 7 (𝑦 ⊆ ∅ → 𝑦 = ∅)
2524eleq1d 2825 . . . . . 6 (𝑦 ⊆ ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
2625biimpac 478 . . . . 5 ((𝑦𝐹𝑦 ⊆ ∅) → ∅ ∈ 𝐹)
2726rexlimiva 3146 . . . 4 (∃𝑦𝐹 𝑦 ⊆ ∅ → ∅ ∈ 𝐹)
2823, 27sylbi 217 . . 3 ([∅ / 𝑧]𝑦𝐹 𝑦𝑧 → ∅ ∈ 𝐹)
2919, 28nsyl 140 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ [∅ / 𝑧]𝑦𝐹 𝑦𝑧)
30 sstr 3991 . . . . . 6 ((𝑦𝑣𝑣𝑢) → 𝑦𝑢)
3130expcom 413 . . . . 5 (𝑣𝑢 → (𝑦𝑣𝑦𝑢))
3231reximdv 3169 . . . 4 (𝑣𝑢 → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
33323ad2ant3 1135 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → (∃𝑦𝐹 𝑦𝑣 → ∃𝑦𝐹 𝑦𝑢))
34 vex 3483 . . . 4 𝑣 ∈ V
35 sseq2 4009 . . . . 5 (𝑧 = 𝑣 → (𝑦𝑧𝑦𝑣))
3635rexbidv 3178 . . . 4 (𝑧 = 𝑣 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣))
3734, 36sbcie 3829 . . 3 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑣)
38 vex 3483 . . . 4 𝑢 ∈ V
39 sseq2 4009 . . . . 5 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
4039rexbidv 3178 . . . 4 (𝑧 = 𝑢 → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢))
4138, 40sbcie 3829 . . 3 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦𝑢)
4233, 37, 413imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑢) → ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧[𝑢 / 𝑧]𝑦𝐹 𝑦𝑧))
43 fbasssin 23845 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤))
44433expib 1122 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤)))
45 sstr2 3989 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑤) ⊆ (𝑢𝑣) → 𝑦 ⊆ (𝑢𝑣)))
4645com12 32 . . . . . . . . . . . . 13 ((𝑧𝑤) ⊆ (𝑢𝑣) → (𝑦 ⊆ (𝑧𝑤) → 𝑦 ⊆ (𝑢𝑣)))
4746reximdv 3169 . . . . . . . . . . . 12 ((𝑧𝑤) ⊆ (𝑢𝑣) → (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
48 ss2in 4244 . . . . . . . . . . . 12 ((𝑧𝑢𝑤𝑣) → (𝑧𝑤) ⊆ (𝑢𝑣))
4947, 48syl11 33 . . . . . . . . . . 11 (∃𝑦𝐹 𝑦 ⊆ (𝑧𝑤) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5044, 49syl6 35 . . . . . . . . . 10 (𝐹 ∈ (fBas‘𝑋) → ((𝑧𝐹𝑤𝐹) → ((𝑧𝑢𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5150exp5c 444 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → (𝑧𝐹 → (𝑤𝐹 → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))))
5251imp31 417 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑤𝐹) → (𝑧𝑢 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5352impancom 451 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (𝑤𝐹 → (𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5453rexlimdv 3152 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑧𝐹) ∧ 𝑧𝑢) → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
5554rexlimdva2 3156 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (∃𝑧𝐹 𝑧𝑢 → (∃𝑤𝐹 𝑤𝑣 → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))))
5655impd 410 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
57563ad2ant1 1133 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → ((∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣) → ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
58 sseq1 4008 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝑢𝑧𝑢))
5958cbvrexvw 3237 . . . . 5 (∃𝑦𝐹 𝑦𝑢 ↔ ∃𝑧𝐹 𝑧𝑢)
6041, 59bitri 275 . . . 4 ([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑧𝐹 𝑧𝑢)
61 sseq1 4008 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
6261cbvrexvw 3237 . . . . 5 (∃𝑦𝐹 𝑦𝑣 ↔ ∃𝑤𝐹 𝑤𝑣)
6337, 62bitri 275 . . . 4 ([𝑣 / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑤𝐹 𝑤𝑣)
6460, 63anbi12i 628 . . 3 (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) ↔ (∃𝑧𝐹 𝑧𝑢 ∧ ∃𝑤𝐹 𝑤𝑣))
6538inex1 5316 . . . 4 (𝑢𝑣) ∈ V
66 sseq2 4009 . . . . 5 (𝑧 = (𝑢𝑣) → (𝑦𝑧𝑦 ⊆ (𝑢𝑣)))
6766rexbidv 3178 . . . 4 (𝑧 = (𝑢𝑣) → (∃𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣)))
6865, 67sbcie 3829 . . 3 ([(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧 ↔ ∃𝑦𝐹 𝑦 ⊆ (𝑢𝑣))
6957, 64, 683imtr4g 296 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (([𝑢 / 𝑧]𝑦𝐹 𝑦𝑧[𝑣 / 𝑧]𝑦𝐹 𝑦𝑧) → [(𝑢𝑣) / 𝑧]𝑦𝐹 𝑦𝑧))
701, 2, 18, 29, 42, 69isfild 23867 1 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wrex 3069  Vcvv 3479  [wsbc 3787  cin 3949  wss 3950  c0 4332  dom cdm 5684  cfv 6560  (class class class)co 7432  fBascfbas 21353  filGencfg 21354  Filcfil 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-fbas 21362  df-fg 21363  df-fil 23855
This theorem is referenced by:  fgabs  23888  trfg  23900  isufil2  23917  ssufl  23927  ufileu  23928  filufint  23929  fixufil  23931  uffixfr  23932  fmfil  23953  fmfg  23958  elfm3  23959  rnelfm  23962  fmfnfmlem2  23964  fmfnfm  23967  fbflim  23985  hausflim  23990  flimclslem  23993  flffbas  24004  fclsbas  24030  fclsfnflim  24036  flimfnfcls  24037  fclscmp  24039  haustsms  24145  tsmscls  24147  tsmsmhm  24155  tsmsadd  24156  cfilufg  24303  metust  24572  fgcfil  25306  cmetcaulem  25323  cmetss  25351  minveclem4a  25465  minveclem4  25467
  Copyright terms: Public domain W3C validator