MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Visualization version   GIF version

Theorem inf3lem2 9573
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9579 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem2
Dummy variables 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . 5 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
21neeq1d 3000 . . . 4 (𝑣 = ∅ → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘∅) ≠ 𝑥))
32imbi2d 341 . . 3 (𝑣 = ∅ → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)))
4 fveq2 6846 . . . . 5 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
54neeq1d 3000 . . . 4 (𝑣 = 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝑢) ≠ 𝑥))
65imbi2d 341 . . 3 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥)))
7 fveq2 6846 . . . . 5 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
87neeq1d 3000 . . . 4 (𝑣 = suc 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘suc 𝑢) ≠ 𝑥))
98imbi2d 341 . . 3 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
10 fveq2 6846 . . . . 5 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1110neeq1d 3000 . . . 4 (𝑣 = 𝐴 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝐴) ≠ 𝑥))
1211imbi2d 341 . . 3 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥)))
13 inf3lem.1 . . . . . . . 8 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
14 inf3lem.2 . . . . . . . 8 𝐹 = (rec(𝐺, ∅) ↾ ω)
15 inf3lem.3 . . . . . . . 8 𝐴 ∈ V
16 inf3lem.4 . . . . . . . 8 𝐵 ∈ V
1713, 14, 15, 16inf3lemb 9569 . . . . . . 7 (𝐹‘∅) = ∅
1817eqeq1i 2738 . . . . . 6 ((𝐹‘∅) = 𝑥 ↔ ∅ = 𝑥)
19 eqcom 2740 . . . . . 6 (∅ = 𝑥𝑥 = ∅)
2018, 19sylbb 218 . . . . 5 ((𝐹‘∅) = 𝑥𝑥 = ∅)
2120necon3i 2973 . . . 4 (𝑥 ≠ ∅ → (𝐹‘∅) ≠ 𝑥)
2221adantr 482 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)
23 vex 3451 . . . . . . . . 9 𝑢 ∈ V
2413, 14, 23, 16inf3lemd 9571 . . . . . . . 8 (𝑢 ∈ ω → (𝐹𝑢) ⊆ 𝑥)
25 df-pss 3933 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 ↔ ((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥))
26 pssnel 4434 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
2725, 26sylbir 234 . . . . . . . . 9 (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
28 ssel 3941 . . . . . . . . . . . . . . 15 (𝑥 𝑥 → (𝑣𝑥𝑣 𝑥))
29 eluni 4872 . . . . . . . . . . . . . . 15 (𝑣 𝑥 ↔ ∃𝑓(𝑣𝑓𝑓𝑥))
3028, 29syl6ib 251 . . . . . . . . . . . . . 14 (𝑥 𝑥 → (𝑣𝑥 → ∃𝑓(𝑣𝑓𝑓𝑥)))
31 eleq2 2823 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘suc 𝑢) = 𝑥 → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓𝑥))
3231biimparc 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑓 ∈ (𝐹‘suc 𝑢))
3313, 14, 23, 16inf3lemc 9570 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
3433eleq2d 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓 ∈ (𝐺‘(𝐹𝑢))))
35 elin 3930 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝑓𝑥) ↔ (𝑣𝑓𝑣𝑥))
36 vex 3451 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
37 fvex 6859 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑢) ∈ V
3813, 14, 36, 37inf3lema 9568 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑓𝑥 ∧ (𝑓𝑥) ⊆ (𝐹𝑢)))
3938simprbi 498 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑓𝑥) ⊆ (𝐹𝑢))
4039sseld 3947 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑣 ∈ (𝑓𝑥) → 𝑣 ∈ (𝐹𝑢)))
4135, 40biimtrrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢)))
4234, 41syl6bi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4332, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4443com23 86 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ω → ((𝑣𝑓𝑣𝑥) → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑣 ∈ (𝐹𝑢))))
4544exp5c 446 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ω → (𝑣𝑓 → (𝑣𝑥 → (𝑓𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4645com34 91 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → (𝑣𝑓 → (𝑓𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4746impd 412 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ((𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4847exlimdv 1937 . . . . . . . . . . . . . 14 (𝑢 ∈ ω → (∃𝑓(𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4930, 48sylan9r 510 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
5049pm2.43d 53 . . . . . . . . . . . 12 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))
51 id 22 . . . . . . . . . . . . 13 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))
5251necon3bd 2954 . . . . . . . . . . . 12 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥))
5350, 52syl6 35 . . . . . . . . . . 11 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥)))
5453impd 412 . . . . . . . . . 10 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5554exlimdv 1937 . . . . . . . . 9 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5627, 55syl5 34 . . . . . . . 8 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5724, 56sylani 605 . . . . . . 7 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5857exp4b 432 . . . . . 6 (𝑢 ∈ ω → (𝑥 𝑥 → (𝑢 ∈ ω → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥))))
5958pm2.43a 54 . . . . 5 (𝑢 ∈ ω → (𝑥 𝑥 → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6059adantld 492 . . . 4 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6160a2d 29 . . 3 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
623, 6, 9, 12, 22, 61finds 7839 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
6362com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2940  {crab 3406  Vcvv 3447  cin 3913  wss 3914  wpss 3915  c0 4286   cuni 4869  cmpt 5192  cres 5639  suc csuc 6323  cfv 6500  ωcom 7806  reccrdg 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360
This theorem is referenced by:  inf3lem3  9574
  Copyright terms: Public domain W3C validator