MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Visualization version   GIF version

Theorem inf3lem2 9666
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9672 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem2
Dummy variables 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
21neeq1d 2997 . . . 4 (𝑣 = ∅ → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘∅) ≠ 𝑥))
32imbi2d 340 . . 3 (𝑣 = ∅ → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)))
4 fveq2 6906 . . . . 5 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
54neeq1d 2997 . . . 4 (𝑣 = 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝑢) ≠ 𝑥))
65imbi2d 340 . . 3 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥)))
7 fveq2 6906 . . . . 5 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
87neeq1d 2997 . . . 4 (𝑣 = suc 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘suc 𝑢) ≠ 𝑥))
98imbi2d 340 . . 3 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
10 fveq2 6906 . . . . 5 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1110neeq1d 2997 . . . 4 (𝑣 = 𝐴 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝐴) ≠ 𝑥))
1211imbi2d 340 . . 3 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥)))
13 inf3lem.1 . . . . . . . 8 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
14 inf3lem.2 . . . . . . . 8 𝐹 = (rec(𝐺, ∅) ↾ ω)
15 inf3lem.3 . . . . . . . 8 𝐴 ∈ V
16 inf3lem.4 . . . . . . . 8 𝐵 ∈ V
1713, 14, 15, 16inf3lemb 9662 . . . . . . 7 (𝐹‘∅) = ∅
1817eqeq1i 2739 . . . . . 6 ((𝐹‘∅) = 𝑥 ↔ ∅ = 𝑥)
19 eqcom 2741 . . . . . 6 (∅ = 𝑥𝑥 = ∅)
2018, 19sylbb 219 . . . . 5 ((𝐹‘∅) = 𝑥𝑥 = ∅)
2120necon3i 2970 . . . 4 (𝑥 ≠ ∅ → (𝐹‘∅) ≠ 𝑥)
2221adantr 480 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)
23 vex 3481 . . . . . . . . 9 𝑢 ∈ V
2413, 14, 23, 16inf3lemd 9664 . . . . . . . 8 (𝑢 ∈ ω → (𝐹𝑢) ⊆ 𝑥)
25 df-pss 3982 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 ↔ ((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥))
26 pssnel 4476 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
2725, 26sylbir 235 . . . . . . . . 9 (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
28 ssel 3988 . . . . . . . . . . . . . . 15 (𝑥 𝑥 → (𝑣𝑥𝑣 𝑥))
29 eluni 4914 . . . . . . . . . . . . . . 15 (𝑣 𝑥 ↔ ∃𝑓(𝑣𝑓𝑓𝑥))
3028, 29imbitrdi 251 . . . . . . . . . . . . . 14 (𝑥 𝑥 → (𝑣𝑥 → ∃𝑓(𝑣𝑓𝑓𝑥)))
31 eleq2 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘suc 𝑢) = 𝑥 → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓𝑥))
3231biimparc 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑓 ∈ (𝐹‘suc 𝑢))
3313, 14, 23, 16inf3lemc 9663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
3433eleq2d 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓 ∈ (𝐺‘(𝐹𝑢))))
35 elin 3978 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝑓𝑥) ↔ (𝑣𝑓𝑣𝑥))
36 vex 3481 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
37 fvex 6919 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑢) ∈ V
3813, 14, 36, 37inf3lema 9661 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑓𝑥 ∧ (𝑓𝑥) ⊆ (𝐹𝑢)))
3938simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑓𝑥) ⊆ (𝐹𝑢))
4039sseld 3993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑣 ∈ (𝑓𝑥) → 𝑣 ∈ (𝐹𝑢)))
4135, 40biimtrrid 243 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢)))
4234, 41biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4332, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4443com23 86 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ω → ((𝑣𝑓𝑣𝑥) → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑣 ∈ (𝐹𝑢))))
4544exp5c 444 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ω → (𝑣𝑓 → (𝑣𝑥 → (𝑓𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4645com34 91 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → (𝑣𝑓 → (𝑓𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4746impd 410 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ((𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4847exlimdv 1930 . . . . . . . . . . . . . 14 (𝑢 ∈ ω → (∃𝑓(𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4930, 48sylan9r 508 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
5049pm2.43d 53 . . . . . . . . . . . 12 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))
51 id 22 . . . . . . . . . . . . 13 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))
5251necon3bd 2951 . . . . . . . . . . . 12 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥))
5350, 52syl6 35 . . . . . . . . . . 11 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥)))
5453impd 410 . . . . . . . . . 10 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5554exlimdv 1930 . . . . . . . . 9 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5627, 55syl5 34 . . . . . . . 8 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5724, 56sylani 604 . . . . . . 7 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5857exp4b 430 . . . . . 6 (𝑢 ∈ ω → (𝑥 𝑥 → (𝑢 ∈ ω → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥))))
5958pm2.43a 54 . . . . 5 (𝑢 ∈ ω → (𝑥 𝑥 → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6059adantld 490 . . . 4 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6160a2d 29 . . 3 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
623, 6, 9, 12, 22, 61finds 7918 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
6362com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  wne 2937  {crab 3432  Vcvv 3477  cin 3961  wss 3962  wpss 3963  c0 4338   cuni 4911  cmpt 5230  cres 5690  suc csuc 6387  cfv 6562  ωcom 7886  reccrdg 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448
This theorem is referenced by:  inf3lem3  9667
  Copyright terms: Public domain W3C validator