MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Visualization version   GIF version

Theorem inf3lem2 9630
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9636 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem2
Dummy variables 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . 5 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
21neeq1d 2999 . . . 4 (𝑣 = ∅ → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘∅) ≠ 𝑥))
32imbi2d 340 . . 3 (𝑣 = ∅ → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)))
4 fveq2 6891 . . . . 5 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
54neeq1d 2999 . . . 4 (𝑣 = 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝑢) ≠ 𝑥))
65imbi2d 340 . . 3 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥)))
7 fveq2 6891 . . . . 5 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
87neeq1d 2999 . . . 4 (𝑣 = suc 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘suc 𝑢) ≠ 𝑥))
98imbi2d 340 . . 3 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
10 fveq2 6891 . . . . 5 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1110neeq1d 2999 . . . 4 (𝑣 = 𝐴 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝐴) ≠ 𝑥))
1211imbi2d 340 . . 3 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥)))
13 inf3lem.1 . . . . . . . 8 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
14 inf3lem.2 . . . . . . . 8 𝐹 = (rec(𝐺, ∅) ↾ ω)
15 inf3lem.3 . . . . . . . 8 𝐴 ∈ V
16 inf3lem.4 . . . . . . . 8 𝐵 ∈ V
1713, 14, 15, 16inf3lemb 9626 . . . . . . 7 (𝐹‘∅) = ∅
1817eqeq1i 2736 . . . . . 6 ((𝐹‘∅) = 𝑥 ↔ ∅ = 𝑥)
19 eqcom 2738 . . . . . 6 (∅ = 𝑥𝑥 = ∅)
2018, 19sylbb 218 . . . . 5 ((𝐹‘∅) = 𝑥𝑥 = ∅)
2120necon3i 2972 . . . 4 (𝑥 ≠ ∅ → (𝐹‘∅) ≠ 𝑥)
2221adantr 480 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)
23 vex 3477 . . . . . . . . 9 𝑢 ∈ V
2413, 14, 23, 16inf3lemd 9628 . . . . . . . 8 (𝑢 ∈ ω → (𝐹𝑢) ⊆ 𝑥)
25 df-pss 3967 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 ↔ ((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥))
26 pssnel 4470 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
2725, 26sylbir 234 . . . . . . . . 9 (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
28 ssel 3975 . . . . . . . . . . . . . . 15 (𝑥 𝑥 → (𝑣𝑥𝑣 𝑥))
29 eluni 4911 . . . . . . . . . . . . . . 15 (𝑣 𝑥 ↔ ∃𝑓(𝑣𝑓𝑓𝑥))
3028, 29imbitrdi 250 . . . . . . . . . . . . . 14 (𝑥 𝑥 → (𝑣𝑥 → ∃𝑓(𝑣𝑓𝑓𝑥)))
31 eleq2 2821 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘suc 𝑢) = 𝑥 → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓𝑥))
3231biimparc 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑓 ∈ (𝐹‘suc 𝑢))
3313, 14, 23, 16inf3lemc 9627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
3433eleq2d 2818 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓 ∈ (𝐺‘(𝐹𝑢))))
35 elin 3964 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝑓𝑥) ↔ (𝑣𝑓𝑣𝑥))
36 vex 3477 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
37 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑢) ∈ V
3813, 14, 36, 37inf3lema 9625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑓𝑥 ∧ (𝑓𝑥) ⊆ (𝐹𝑢)))
3938simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑓𝑥) ⊆ (𝐹𝑢))
4039sseld 3981 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑣 ∈ (𝑓𝑥) → 𝑣 ∈ (𝐹𝑢)))
4135, 40biimtrrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢)))
4234, 41syl6bi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4332, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4443com23 86 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ω → ((𝑣𝑓𝑣𝑥) → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑣 ∈ (𝐹𝑢))))
4544exp5c 444 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ω → (𝑣𝑓 → (𝑣𝑥 → (𝑓𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4645com34 91 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → (𝑣𝑓 → (𝑓𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4746impd 410 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ((𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4847exlimdv 1935 . . . . . . . . . . . . . 14 (𝑢 ∈ ω → (∃𝑓(𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4930, 48sylan9r 508 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
5049pm2.43d 53 . . . . . . . . . . . 12 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))
51 id 22 . . . . . . . . . . . . 13 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))
5251necon3bd 2953 . . . . . . . . . . . 12 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥))
5350, 52syl6 35 . . . . . . . . . . 11 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥)))
5453impd 410 . . . . . . . . . 10 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5554exlimdv 1935 . . . . . . . . 9 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5627, 55syl5 34 . . . . . . . 8 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5724, 56sylani 603 . . . . . . 7 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5857exp4b 430 . . . . . 6 (𝑢 ∈ ω → (𝑥 𝑥 → (𝑢 ∈ ω → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥))))
5958pm2.43a 54 . . . . 5 (𝑢 ∈ ω → (𝑥 𝑥 → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6059adantld 490 . . . 4 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6160a2d 29 . . 3 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
623, 6, 9, 12, 22, 61finds 7893 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
6362com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1780  wcel 2105  wne 2939  {crab 3431  Vcvv 3473  cin 3947  wss 3948  wpss 3949  c0 4322   cuni 4908  cmpt 5231  cres 5678  suc csuc 6366  cfv 6543  ωcom 7859  reccrdg 8415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416
This theorem is referenced by:  inf3lem3  9631
  Copyright terms: Public domain W3C validator