MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Visualization version   GIF version

Theorem inf3lem2 9244
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9250 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem2
Dummy variables 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6717 . . . . 5 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
21neeq1d 3000 . . . 4 (𝑣 = ∅ → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘∅) ≠ 𝑥))
32imbi2d 344 . . 3 (𝑣 = ∅ → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)))
4 fveq2 6717 . . . . 5 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
54neeq1d 3000 . . . 4 (𝑣 = 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝑢) ≠ 𝑥))
65imbi2d 344 . . 3 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥)))
7 fveq2 6717 . . . . 5 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
87neeq1d 3000 . . . 4 (𝑣 = suc 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘suc 𝑢) ≠ 𝑥))
98imbi2d 344 . . 3 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
10 fveq2 6717 . . . . 5 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1110neeq1d 3000 . . . 4 (𝑣 = 𝐴 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝐴) ≠ 𝑥))
1211imbi2d 344 . . 3 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥)))
13 inf3lem.1 . . . . . . . 8 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
14 inf3lem.2 . . . . . . . 8 𝐹 = (rec(𝐺, ∅) ↾ ω)
15 inf3lem.3 . . . . . . . 8 𝐴 ∈ V
16 inf3lem.4 . . . . . . . 8 𝐵 ∈ V
1713, 14, 15, 16inf3lemb 9240 . . . . . . 7 (𝐹‘∅) = ∅
1817eqeq1i 2742 . . . . . 6 ((𝐹‘∅) = 𝑥 ↔ ∅ = 𝑥)
19 eqcom 2744 . . . . . 6 (∅ = 𝑥𝑥 = ∅)
2018, 19sylbb 222 . . . . 5 ((𝐹‘∅) = 𝑥𝑥 = ∅)
2120necon3i 2973 . . . 4 (𝑥 ≠ ∅ → (𝐹‘∅) ≠ 𝑥)
2221adantr 484 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)
23 vex 3412 . . . . . . . . 9 𝑢 ∈ V
2413, 14, 23, 16inf3lemd 9242 . . . . . . . 8 (𝑢 ∈ ω → (𝐹𝑢) ⊆ 𝑥)
25 df-pss 3885 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 ↔ ((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥))
26 pssnel 4385 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
2725, 26sylbir 238 . . . . . . . . 9 (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
28 ssel 3893 . . . . . . . . . . . . . . 15 (𝑥 𝑥 → (𝑣𝑥𝑣 𝑥))
29 eluni 4822 . . . . . . . . . . . . . . 15 (𝑣 𝑥 ↔ ∃𝑓(𝑣𝑓𝑓𝑥))
3028, 29syl6ib 254 . . . . . . . . . . . . . 14 (𝑥 𝑥 → (𝑣𝑥 → ∃𝑓(𝑣𝑓𝑓𝑥)))
31 eleq2 2826 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘suc 𝑢) = 𝑥 → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓𝑥))
3231biimparc 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑓 ∈ (𝐹‘suc 𝑢))
3313, 14, 23, 16inf3lemc 9241 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
3433eleq2d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓 ∈ (𝐺‘(𝐹𝑢))))
35 elin 3882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝑓𝑥) ↔ (𝑣𝑓𝑣𝑥))
36 vex 3412 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
37 fvex 6730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑢) ∈ V
3813, 14, 36, 37inf3lema 9239 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑓𝑥 ∧ (𝑓𝑥) ⊆ (𝐹𝑢)))
3938simprbi 500 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑓𝑥) ⊆ (𝐹𝑢))
4039sseld 3900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑣 ∈ (𝑓𝑥) → 𝑣 ∈ (𝐹𝑢)))
4135, 40syl5bir 246 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢)))
4234, 41syl6bi 256 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4332, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4443com23 86 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ω → ((𝑣𝑓𝑣𝑥) → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑣 ∈ (𝐹𝑢))))
4544exp5c 448 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ω → (𝑣𝑓 → (𝑣𝑥 → (𝑓𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4645com34 91 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → (𝑣𝑓 → (𝑓𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4746impd 414 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ((𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4847exlimdv 1941 . . . . . . . . . . . . . 14 (𝑢 ∈ ω → (∃𝑓(𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4930, 48sylan9r 512 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
5049pm2.43d 53 . . . . . . . . . . . 12 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))
51 id 22 . . . . . . . . . . . . 13 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))
5251necon3bd 2954 . . . . . . . . . . . 12 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥))
5350, 52syl6 35 . . . . . . . . . . 11 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥)))
5453impd 414 . . . . . . . . . 10 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5554exlimdv 1941 . . . . . . . . 9 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5627, 55syl5 34 . . . . . . . 8 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5724, 56sylani 607 . . . . . . 7 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5857exp4b 434 . . . . . 6 (𝑢 ∈ ω → (𝑥 𝑥 → (𝑢 ∈ ω → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥))))
5958pm2.43a 54 . . . . 5 (𝑢 ∈ ω → (𝑥 𝑥 → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6059adantld 494 . . . 4 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6160a2d 29 . . 3 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
623, 6, 9, 12, 22, 61finds 7676 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
6362com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wne 2940  {crab 3065  Vcvv 3408  cin 3865  wss 3866  wpss 3867  c0 4237   cuni 4819  cmpt 5135  cres 5553  suc csuc 6215  cfv 6380  ωcom 7644  reccrdg 8145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146
This theorem is referenced by:  inf3lem3  9245
  Copyright terms: Public domain W3C validator