| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6358 tfr3 8367 oaass 8525 omordi 8530 nnmordi 8595 fiint 9277 fiintOLD 9278 zorn2lem6 10454 zorn2lem7 10455 mulgt0sr 11058 sqlecan 14174 rexuzre 15319 caurcvg 15643 ndvdssub 16379 lsmcv 21051 iscnp4 23150 nrmsep3 23242 2ndcdisj 23343 2ndcsep 23346 tsmsxp 24042 metcnp3 24428 xrlimcnp 26878 ax5seglem5 28860 elspansn4 31502 hoadddir 31733 atcvatlem 32314 sumdmdii 32344 sumdmdlem 32347 isbasisrelowllem1 37343 isbasisrelowllem2 37344 disjlem17 38791 prtlem17 38869 cvratlem 39415 athgt 39450 lplnnle2at 39535 lplncvrlvol2 39609 cdlemb 39788 dalaw 39880 cdleme50trn2 40545 cdlemg18b 40673 dihmeetlem3N 41299 onfrALTlem2 44536 in3an 44601 lindslinindsimp1 48446 |
| Copyright terms: Public domain | W3C validator |