![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6421 wfrlem12OLD 8376 tfr3 8455 oaass 8617 omordi 8622 nnmordi 8687 fiint 9394 fiintOLD 9395 zorn2lem6 10570 zorn2lem7 10571 mulgt0sr 11174 sqlecan 14258 rexuzre 15401 caurcvg 15725 ndvdssub 16457 lsmcv 21166 iscnp4 23292 nrmsep3 23384 2ndcdisj 23485 2ndcsep 23488 tsmsxp 24184 metcnp3 24574 xrlimcnp 27029 ax5seglem5 28966 elspansn4 31605 hoadddir 31836 atcvatlem 32417 sumdmdii 32447 sumdmdlem 32450 isbasisrelowllem1 37321 isbasisrelowllem2 37322 disjlem17 38755 prtlem17 38832 cvratlem 39378 athgt 39413 lplnnle2at 39498 lplncvrlvol2 39572 cdlemb 39751 dalaw 39843 cdleme50trn2 40508 cdlemg18b 40636 dihmeetlem3N 41262 onfrALTlem2 44517 in3an 44582 lindslinindsimp1 48186 |
Copyright terms: Public domain | W3C validator |