| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6332 tfr3 8318 oaass 8476 omordi 8481 nnmordi 8546 fiint 9211 zorn2lem6 10389 zorn2lem7 10390 mulgt0sr 10993 sqlecan 14113 rexuzre 15257 caurcvg 15581 ndvdssub 16317 lsmcv 21076 iscnp4 23176 nrmsep3 23268 2ndcdisj 23369 2ndcsep 23372 tsmsxp 24068 metcnp3 24453 xrlimcnp 26903 ax5seglem5 28909 elspansn4 31548 hoadddir 31779 atcvatlem 32360 sumdmdii 32390 sumdmdlem 32393 isbasisrelowllem1 37388 isbasisrelowllem2 37389 disjlem17 38836 prtlem17 38914 cvratlem 39459 athgt 39494 lplnnle2at 39579 lplncvrlvol2 39653 cdlemb 39832 dalaw 39924 cdleme50trn2 40589 cdlemg18b 40717 dihmeetlem3N 41343 onfrALTlem2 44578 in3an 44643 lindslinindsimp1 48488 |
| Copyright terms: Public domain | W3C validator |