![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6412 wfrlem12OLD 8359 tfr3 8438 oaass 8598 omordi 8603 nnmordi 8668 fiint 9364 fiintOLD 9365 zorn2lem6 10539 zorn2lem7 10540 mulgt0sr 11143 sqlecan 14245 rexuzre 15388 caurcvg 15710 ndvdssub 16443 lsmcv 21161 iscnp4 23287 nrmsep3 23379 2ndcdisj 23480 2ndcsep 23483 tsmsxp 24179 metcnp3 24569 xrlimcnp 27026 ax5seglem5 28963 elspansn4 31602 hoadddir 31833 atcvatlem 32414 sumdmdii 32444 sumdmdlem 32447 isbasisrelowllem1 37338 isbasisrelowllem2 37339 disjlem17 38781 prtlem17 38858 cvratlem 39404 athgt 39439 lplnnle2at 39524 lplncvrlvol2 39598 cdlemb 39777 dalaw 39869 cdleme50trn2 40534 cdlemg18b 40662 dihmeetlem3N 41288 onfrALTlem2 44544 in3an 44609 lindslinindsimp1 48303 |
Copyright terms: Public domain | W3C validator |