| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6383 wfrlem12OLD 8339 tfr3 8418 oaass 8578 omordi 8583 nnmordi 8648 fiint 9343 fiintOLD 9344 zorn2lem6 10520 zorn2lem7 10521 mulgt0sr 11124 sqlecan 14232 rexuzre 15376 caurcvg 15698 ndvdssub 16433 lsmcv 21107 iscnp4 23206 nrmsep3 23298 2ndcdisj 23399 2ndcsep 23402 tsmsxp 24098 metcnp3 24484 xrlimcnp 26935 ax5seglem5 28917 elspansn4 31559 hoadddir 31790 atcvatlem 32371 sumdmdii 32401 sumdmdlem 32404 isbasisrelowllem1 37378 isbasisrelowllem2 37379 disjlem17 38822 prtlem17 38899 cvratlem 39445 athgt 39480 lplnnle2at 39565 lplncvrlvol2 39639 cdlemb 39818 dalaw 39910 cdleme50trn2 40575 cdlemg18b 40703 dihmeetlem3N 41329 onfrALTlem2 44538 in3an 44603 lindslinindsimp1 48400 |
| Copyright terms: Public domain | W3C validator |