MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp4a Structured version   Visualization version   GIF version

Theorem exp4a 431
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.)
Hypothesis
Ref Expression
exp4a.1 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
Assertion
Ref Expression
exp4a (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4a
StepHypRef Expression
1 exp4a.1 . . 3 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
21imp 406 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32exp4b 430 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  exp4d  433  exp45  438  exp5c  444  tz7.7  6383  wfrlem12OLD  8339  tfr3  8418  oaass  8578  omordi  8583  nnmordi  8648  fiint  9343  fiintOLD  9344  zorn2lem6  10520  zorn2lem7  10521  mulgt0sr  11124  sqlecan  14232  rexuzre  15376  caurcvg  15698  ndvdssub  16433  lsmcv  21107  iscnp4  23206  nrmsep3  23298  2ndcdisj  23399  2ndcsep  23402  tsmsxp  24098  metcnp3  24484  xrlimcnp  26935  ax5seglem5  28917  elspansn4  31559  hoadddir  31790  atcvatlem  32371  sumdmdii  32401  sumdmdlem  32404  isbasisrelowllem1  37378  isbasisrelowllem2  37379  disjlem17  38822  prtlem17  38899  cvratlem  39445  athgt  39480  lplnnle2at  39565  lplncvrlvol2  39639  cdlemb  39818  dalaw  39910  cdleme50trn2  40575  cdlemg18b  40703  dihmeetlem3N  41329  onfrALTlem2  44538  in3an  44603  lindslinindsimp1  48400
  Copyright terms: Public domain W3C validator