Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6277 wfrlem12OLD 8122 tfr3 8201 oaass 8354 omordi 8359 nnmordi 8424 fiint 9021 zorn2lem6 10188 zorn2lem7 10189 mulgt0sr 10792 sqlecan 13853 rexuzre 14992 caurcvg 15316 ndvdssub 16046 lsmcv 20318 iscnp4 22322 nrmsep3 22414 2ndcdisj 22515 2ndcsep 22518 tsmsxp 23214 metcnp3 23602 xrlimcnp 26023 ax5seglem5 27204 elspansn4 29836 hoadddir 30067 atcvatlem 30648 sumdmdii 30678 sumdmdlem 30681 isbasisrelowllem1 35453 isbasisrelowllem2 35454 prtlem17 36817 cvratlem 37362 athgt 37397 lplnnle2at 37482 lplncvrlvol2 37556 cdlemb 37735 dalaw 37827 cdleme50trn2 38492 cdlemg18b 38620 dihmeetlem3N 39246 onfrALTlem2 42055 in3an 42120 lindslinindsimp1 45686 |
Copyright terms: Public domain | W3C validator |