| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6337 tfr3 8328 oaass 8486 omordi 8491 nnmordi 8556 fiint 9235 fiintOLD 9236 zorn2lem6 10414 zorn2lem7 10415 mulgt0sr 11018 sqlecan 14134 rexuzre 15278 caurcvg 15602 ndvdssub 16338 lsmcv 21066 iscnp4 23166 nrmsep3 23258 2ndcdisj 23359 2ndcsep 23362 tsmsxp 24058 metcnp3 24444 xrlimcnp 26894 ax5seglem5 28896 elspansn4 31535 hoadddir 31766 atcvatlem 32347 sumdmdii 32377 sumdmdlem 32380 isbasisrelowllem1 37328 isbasisrelowllem2 37329 disjlem17 38776 prtlem17 38854 cvratlem 39400 athgt 39435 lplnnle2at 39520 lplncvrlvol2 39594 cdlemb 39773 dalaw 39865 cdleme50trn2 40530 cdlemg18b 40658 dihmeetlem3N 41284 onfrALTlem2 44520 in3an 44585 lindslinindsimp1 48443 |
| Copyright terms: Public domain | W3C validator |