| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6361 tfr3 8370 oaass 8528 omordi 8533 nnmordi 8598 fiint 9284 fiintOLD 9285 zorn2lem6 10461 zorn2lem7 10462 mulgt0sr 11065 sqlecan 14181 rexuzre 15326 caurcvg 15650 ndvdssub 16386 lsmcv 21058 iscnp4 23157 nrmsep3 23249 2ndcdisj 23350 2ndcsep 23353 tsmsxp 24049 metcnp3 24435 xrlimcnp 26885 ax5seglem5 28867 elspansn4 31509 hoadddir 31740 atcvatlem 32321 sumdmdii 32351 sumdmdlem 32354 isbasisrelowllem1 37350 isbasisrelowllem2 37351 disjlem17 38798 prtlem17 38876 cvratlem 39422 athgt 39457 lplnnle2at 39542 lplncvrlvol2 39616 cdlemb 39795 dalaw 39887 cdleme50trn2 40552 cdlemg18b 40680 dihmeetlem3N 41306 onfrALTlem2 44543 in3an 44608 lindslinindsimp1 48450 |
| Copyright terms: Public domain | W3C validator |