![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 408 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 432 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: exp4d 435 exp45 440 exp5c 446 tz7.7 6391 wfrlem12OLD 8320 tfr3 8399 oaass 8561 omordi 8566 nnmordi 8631 fiint 9324 zorn2lem6 10496 zorn2lem7 10497 mulgt0sr 11100 sqlecan 14173 rexuzre 15299 caurcvg 15623 ndvdssub 16352 lsmcv 20754 iscnp4 22767 nrmsep3 22859 2ndcdisj 22960 2ndcsep 22963 tsmsxp 23659 metcnp3 24049 xrlimcnp 26473 ax5seglem5 28191 elspansn4 30826 hoadddir 31057 atcvatlem 31638 sumdmdii 31668 sumdmdlem 31671 isbasisrelowllem1 36236 isbasisrelowllem2 36237 disjlem17 37669 prtlem17 37746 cvratlem 38292 athgt 38327 lplnnle2at 38412 lplncvrlvol2 38486 cdlemb 38665 dalaw 38757 cdleme50trn2 39422 cdlemg18b 39550 dihmeetlem3N 40176 onfrALTlem2 43307 in3an 43372 lindslinindsimp1 47138 |
Copyright terms: Public domain | W3C validator |