| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
| Ref | Expression |
|---|---|
| exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp4d 433 exp45 438 exp5c 444 tz7.7 6337 tfr3 8324 oaass 8482 omordi 8487 nnmordi 8552 fiint 9218 zorn2lem6 10399 zorn2lem7 10400 mulgt0sr 11003 sqlecan 14118 rexuzre 15262 caurcvg 15586 ndvdssub 16322 lsmcv 21080 iscnp4 23179 nrmsep3 23271 2ndcdisj 23372 2ndcsep 23375 tsmsxp 24071 metcnp3 24456 xrlimcnp 26906 ax5seglem5 28913 elspansn4 31555 hoadddir 31786 atcvatlem 32367 sumdmdii 32397 sumdmdlem 32400 isbasisrelowllem1 37420 isbasisrelowllem2 37421 disjlem17 38917 prtlem17 38995 cvratlem 39540 athgt 39575 lplnnle2at 39660 lplncvrlvol2 39734 cdlemb 39913 dalaw 40005 cdleme50trn2 40670 cdlemg18b 40798 dihmeetlem3N 41424 onfrALTlem2 44663 in3an 44728 lindslinindsimp1 48582 |
| Copyright terms: Public domain | W3C validator |