Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 431 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: exp4d 434 exp45 439 exp5c 445 tz7.7 6292 wfrlem12OLD 8151 tfr3 8230 oaass 8392 omordi 8397 nnmordi 8462 fiint 9091 zorn2lem6 10257 zorn2lem7 10258 mulgt0sr 10861 sqlecan 13925 rexuzre 15064 caurcvg 15388 ndvdssub 16118 lsmcv 20403 iscnp4 22414 nrmsep3 22506 2ndcdisj 22607 2ndcsep 22610 tsmsxp 23306 metcnp3 23696 xrlimcnp 26118 ax5seglem5 27301 elspansn4 29935 hoadddir 30166 atcvatlem 30747 sumdmdii 30777 sumdmdlem 30780 isbasisrelowllem1 35526 isbasisrelowllem2 35527 prtlem17 36890 cvratlem 37435 athgt 37470 lplnnle2at 37555 lplncvrlvol2 37629 cdlemb 37808 dalaw 37900 cdleme50trn2 38565 cdlemg18b 38693 dihmeetlem3N 39319 onfrALTlem2 42166 in3an 42231 lindslinindsimp1 45798 |
Copyright terms: Public domain | W3C validator |