![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 431 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: exp4d 434 exp45 439 exp5c 445 tz7.7 6097 wfrlem12 7823 tfr3 7892 oaass 8042 omordi 8047 nnmordi 8112 fiint 8646 zorn2lem6 9774 zorn2lem7 9775 mulgt0sr 10378 sqlecan 13426 rexuzre 14551 caurcvg 14872 ndvdssub 15598 lsmcv 19608 iscnp4 21560 nrmsep3 21652 2ndcdisj 21753 2ndcsep 21756 tsmsxp 22451 metcnp3 22838 xrlimcnp 25233 ax5seglem5 26407 elspansn4 29046 hoadddir 29277 atcvatlem 29858 sumdmdii 29888 sumdmdlem 29891 isbasisrelowllem1 34192 isbasisrelowllem2 34193 prtlem17 35568 cvratlem 36113 athgt 36148 lplnnle2at 36233 lplncvrlvol2 36307 cdlemb 36486 dalaw 36578 cdleme50trn2 37243 cdlemg18b 37371 dihmeetlem3N 37997 onfrALTlem2 40444 in3an 40509 lindslinindsimp1 44018 |
Copyright terms: Public domain | W3C validator |