Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4a | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Ref | Expression |
---|---|
exp4a | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . . 3 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) | |
2 | 1 | imp 410 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 434 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: exp4d 437 exp45 442 exp5c 448 tz7.7 6239 wfrlem12 8066 tfr3 8135 oaass 8289 omordi 8294 nnmordi 8359 fiint 8948 zorn2lem6 10115 zorn2lem7 10116 mulgt0sr 10719 sqlecan 13777 rexuzre 14916 caurcvg 15240 ndvdssub 15970 lsmcv 20178 iscnp4 22160 nrmsep3 22252 2ndcdisj 22353 2ndcsep 22356 tsmsxp 23052 metcnp3 23438 xrlimcnp 25851 ax5seglem5 27024 elspansn4 29654 hoadddir 29885 atcvatlem 30466 sumdmdii 30496 sumdmdlem 30499 isbasisrelowllem1 35263 isbasisrelowllem2 35264 prtlem17 36627 cvratlem 37172 athgt 37207 lplnnle2at 37292 lplncvrlvol2 37366 cdlemb 37545 dalaw 37637 cdleme50trn2 38302 cdlemg18b 38430 dihmeetlem3N 39056 onfrALTlem2 41839 in3an 41904 lindslinindsimp1 45471 |
Copyright terms: Public domain | W3C validator |