Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinN Structured version   Visualization version   GIF version

Theorem pclfinN 39945
Description: The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 39995. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclfinN ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋

Proof of Theorem pclfinN
Dummy variables 𝑞 𝑝 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
2 elin 3918 . . . . . . . 8 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
3 elpwi 4557 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
43adantl 481 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
52, 4sylbi 217 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → 𝑦𝑋)
6 simpll 766 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝐾 ∈ AtLat)
7 sstr 3943 . . . . . . . . . . . 12 ((𝑦𝑋𝑋𝐴) → 𝑦𝐴)
87ancoms 458 . . . . . . . . . . 11 ((𝑋𝐴𝑦𝑋) → 𝑦𝐴)
98adantll 714 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝐴)
10 pclfin.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
11 eqid 2731 . . . . . . . . . . 11 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclfin.c . . . . . . . . . . 11 𝑈 = (PCl‘𝐾)
1310, 11, 12pclclN 39936 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝐴) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
146, 9, 13syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
1510, 11psubssat 39799 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑈𝑦) ∈ (PSubSp‘𝐾)) → (𝑈𝑦) ⊆ 𝐴)
166, 14, 15syl2anc 584 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ 𝐴)
1716ex 412 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑈𝑦) ⊆ 𝐴))
185, 17syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑈𝑦) ⊆ 𝐴))
1918ralrimiv 3123 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
20 iunss 4994 . . . . 5 ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ↔ ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
2119, 20sylibr 234 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
22 eliun 4945 . . . . . . . . 9 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦))
23 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑈𝑦) = (𝑈𝑤))
2423eleq2d 2817 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑝 ∈ (𝑈𝑦) ↔ 𝑝 ∈ (𝑈𝑤)))
2524cbvrexvw 3211 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
2622, 25bitri 275 . . . . . . . 8 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
27 eliun 4945 . . . . . . . . 9 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦))
28 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑣 → (𝑈𝑦) = (𝑈𝑣))
2928eleq2d 2817 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑞 ∈ (𝑈𝑦) ↔ 𝑞 ∈ (𝑈𝑣)))
3029cbvrexvw 3211 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3127, 30bitri 275 . . . . . . . 8 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3226, 31anbi12i 628 . . . . . . 7 ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) ↔ (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)))
33 elin 3918 . . . . . . . . . . 11 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋))
34 elpwi 4557 . . . . . . . . . . . 12 (𝑤 ∈ 𝒫 𝑋𝑤𝑋)
3534anim2i 617 . . . . . . . . . . 11 ((𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
3633, 35sylbi 217 . . . . . . . . . 10 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
37 elin 3918 . . . . . . . . . . . . . 14 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋))
38 elpwi 4557 . . . . . . . . . . . . . . 15 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
3938anim2i 617 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
4037, 39sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
41 simp2rl 1243 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ∈ Fin)
42 simp12l 1287 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ∈ Fin)
43 unfi 9080 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ 𝑣 ∈ Fin) → (𝑤𝑣) ∈ Fin)
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ Fin)
45 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝑋)
46 simp12r 1288 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝑋)
4745, 46unssd 4142 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝑋)
48 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ∈ V
49 vex 3440 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ∈ V
5048, 49unex 7677 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑣) ∈ V
5150elpw 4554 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑣) ∈ 𝒫 𝑋 ↔ (𝑤𝑣) ⊆ 𝑋)
5247, 51sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ 𝒫 𝑋)
5344, 52elind 4150 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋))
54 simp11l 1285 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ AtLat)
55 simp11r 1286 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
5645, 55sstrd 3945 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝐴)
5746, 55sstrd 3945 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝐴)
5856, 57unssd 4142 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝐴)
5910, 11, 12pclclN 39936 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ AtLat ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
6054, 58, 59syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
61 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝐴)
62 ssun1 4128 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ⊆ (𝑤𝑣)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ⊆ (𝑤𝑣))
6410, 12pclssN 39939 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑤 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
6554, 63, 58, 64syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
66 simp2l 1200 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈𝑤))
6765, 66sseldd 3935 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈‘(𝑤𝑣)))
68 ssun2 4129 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ⊆ (𝑤𝑣)
6968a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ⊆ (𝑤𝑣))
7010, 12pclssN 39939 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑣 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
7154, 69, 58, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
72 simp13 1206 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈𝑣))
7371, 72sseldd 3935 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈‘(𝑤𝑣)))
74 simp3r 1203 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
75 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (le‘𝐾) = (le‘𝐾)
76 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (join‘𝐾) = (join‘𝐾)
7775, 76, 10, 11psubspi2N 39793 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ AtLat ∧ (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾) ∧ 𝑟𝐴) ∧ (𝑝 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑞 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
7854, 60, 61, 67, 73, 74, 77syl33anc 1387 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
79 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤𝑣) → (𝑈𝑦) = (𝑈‘(𝑤𝑣)))
8079eleq2d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤𝑣) → (𝑟 ∈ (𝑈𝑦) ↔ 𝑟 ∈ (𝑈‘(𝑤𝑣))))
8180rspcev 3577 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑟 ∈ (𝑈‘(𝑤𝑣))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8253, 78, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
83 eliun 4945 . . . . . . . . . . . . . . . . 17 (𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8482, 83sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
85843exp 1119 . . . . . . . . . . . . . . 15 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → ((𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) → ((𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
8685exp5c 444 . . . . . . . . . . . . . 14 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
87863exp 1119 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑣 ∈ Fin ∧ 𝑣𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8840, 87syl5 34 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8988rexlimdv 3131 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9089com24 95 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9136, 90syl5 34 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9291rexlimdv 3131 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
9392impd 410 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9432, 93biimtrid 242 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9594ralrimdv 3130 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
9695ralrimivv 3173 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
9775, 76, 10, 11ispsubsp 39790 . . . . 5 (𝐾 ∈ AtLat → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9897adantr 480 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9921, 96, 98mpbir2and 713 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾))
100 snfi 8965 . . . . . . . . 9 {𝑤} ∈ Fin
101100a1i 11 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ Fin)
102 snelpwi 5385 . . . . . . . . 9 (𝑤𝑋 → {𝑤} ∈ 𝒫 𝑋)
103102adantl 481 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ 𝒫 𝑋)
104101, 103elind 4150 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (Fin ∩ 𝒫 𝑋))
105 vsnid 4616 . . . . . . . 8 𝑤 ∈ {𝑤}
106 simpll 766 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝐾 ∈ AtLat)
107 ssel2 3929 . . . . . . . . . . 11 ((𝑋𝐴𝑤𝑋) → 𝑤𝐴)
108107adantll 714 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤𝐴)
10910, 11snatpsubN 39795 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑤𝐴) → {𝑤} ∈ (PSubSp‘𝐾))
110106, 108, 109syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (PSubSp‘𝐾))
11111, 12pclidN 39941 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ {𝑤} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑤}) = {𝑤})
112106, 110, 111syl2anc 584 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → (𝑈‘{𝑤}) = {𝑤})
113105, 112eleqtrrid 2838 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤 ∈ (𝑈‘{𝑤}))
114 fveq2 6822 . . . . . . . . 9 (𝑦 = {𝑤} → (𝑈𝑦) = (𝑈‘{𝑤}))
115114eleq2d 2817 . . . . . . . 8 (𝑦 = {𝑤} → (𝑤 ∈ (𝑈𝑦) ↔ 𝑤 ∈ (𝑈‘{𝑤})))
116115rspcev 3577 . . . . . . 7 (({𝑤} ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑤 ∈ (𝑈‘{𝑤})) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
117104, 113, 116syl2anc 584 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
118117ex 412 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋 → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦)))
119 eliun 4945 . . . . 5 (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
120118, 119imbitrrdi 252 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
121120ssrdv 3940 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
122 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝑋)
123 simplr 768 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑋𝐴)
12410, 12pclssN 39939 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝑋𝑋𝐴) → (𝑈𝑦) ⊆ (𝑈𝑋))
1256, 122, 123, 124syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ (𝑈𝑋))
126125sseld 3933 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
127126ex 412 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
1285, 127syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
129128rexlimdv 3131 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
130119, 129biimtrid 242 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
131130ssrdv 3940 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))
13211, 12pclbtwnN 39942 . . 3 (((𝐾 ∈ AtLat ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾)) ∧ (𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
1331, 99, 121, 131, 132syl22anc 838 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
134133eqcomd 2737 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cun 3900  cin 3901  wss 3902  𝒫 cpw 4550  {csn 4576   ciun 4941   class class class wbr 5091  cfv 6481  (class class class)co 7346  Fincfn 8869  lecple 17168  joincjn 18217  Atomscatm 39308  AtLatcal 39309  PSubSpcpsubsp 39541  PClcpclN 39932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-covers 39311  df-ats 39312  df-atl 39343  df-psubsp 39548  df-pclN 39933
This theorem is referenced by:  pclcmpatN  39946
  Copyright terms: Public domain W3C validator