Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinN Structured version   Visualization version   GIF version

Theorem pclfinN 40022
Description: The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 40072. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclfinN ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋

Proof of Theorem pclfinN
Dummy variables 𝑞 𝑝 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
2 elin 3914 . . . . . . . 8 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
3 elpwi 4558 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
43adantl 481 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → 𝑦𝑋)
52, 4sylbi 217 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → 𝑦𝑋)
6 simpll 766 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝐾 ∈ AtLat)
7 sstr 3939 . . . . . . . . . . . 12 ((𝑦𝑋𝑋𝐴) → 𝑦𝐴)
87ancoms 458 . . . . . . . . . . 11 ((𝑋𝐴𝑦𝑋) → 𝑦𝐴)
98adantll 714 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝐴)
10 pclfin.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
11 eqid 2733 . . . . . . . . . . 11 (PSubSp‘𝐾) = (PSubSp‘𝐾)
12 pclfin.c . . . . . . . . . . 11 𝑈 = (PCl‘𝐾)
1310, 11, 12pclclN 40013 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝐴) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
146, 9, 13syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ∈ (PSubSp‘𝐾))
1510, 11psubssat 39876 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑈𝑦) ∈ (PSubSp‘𝐾)) → (𝑈𝑦) ⊆ 𝐴)
166, 14, 15syl2anc 584 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ 𝐴)
1716ex 412 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑈𝑦) ⊆ 𝐴))
185, 17syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑈𝑦) ⊆ 𝐴))
1918ralrimiv 3124 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
20 iunss 4997 . . . . 5 ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ↔ ∀𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
2119, 20sylibr 234 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴)
22 eliun 4947 . . . . . . . . 9 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦))
23 fveq2 6830 . . . . . . . . . . 11 (𝑦 = 𝑤 → (𝑈𝑦) = (𝑈𝑤))
2423eleq2d 2819 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑝 ∈ (𝑈𝑦) ↔ 𝑝 ∈ (𝑈𝑤)))
2524cbvrexvw 3212 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
2622, 25bitri 275 . . . . . . . 8 (𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤))
27 eliun 4947 . . . . . . . . 9 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦))
28 fveq2 6830 . . . . . . . . . . 11 (𝑦 = 𝑣 → (𝑈𝑦) = (𝑈𝑣))
2928eleq2d 2819 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑞 ∈ (𝑈𝑦) ↔ 𝑞 ∈ (𝑈𝑣)))
3029cbvrexvw 3212 . . . . . . . . 9 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3127, 30bitri 275 . . . . . . . 8 (𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣))
3226, 31anbi12i 628 . . . . . . 7 ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) ↔ (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)))
33 elin 3914 . . . . . . . . . . 11 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋))
34 elpwi 4558 . . . . . . . . . . . 12 (𝑤 ∈ 𝒫 𝑋𝑤𝑋)
3534anim2i 617 . . . . . . . . . . 11 ((𝑤 ∈ Fin ∧ 𝑤 ∈ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
3633, 35sylbi 217 . . . . . . . . . 10 (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ Fin ∧ 𝑤𝑋))
37 elin 3914 . . . . . . . . . . . . . 14 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋))
38 elpwi 4558 . . . . . . . . . . . . . . 15 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
3938anim2i 617 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ 𝑣 ∈ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
4037, 39sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑣 ∈ Fin ∧ 𝑣𝑋))
41 simp2rl 1243 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ∈ Fin)
42 simp12l 1287 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ∈ Fin)
43 unfi 9089 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ 𝑣 ∈ Fin) → (𝑤𝑣) ∈ Fin)
4441, 42, 43syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ Fin)
45 simp2rr 1244 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝑋)
46 simp12r 1288 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝑋)
4745, 46unssd 4141 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝑋)
48 vex 3441 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ∈ V
49 vex 3441 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ∈ V
5048, 49unex 7685 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑣) ∈ V
5150elpw 4555 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑣) ∈ 𝒫 𝑋 ↔ (𝑤𝑣) ⊆ 𝑋)
5247, 51sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ 𝒫 𝑋)
5344, 52elind 4149 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋))
54 simp11l 1285 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝐾 ∈ AtLat)
55 simp11r 1286 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑋𝐴)
5645, 55sstrd 3941 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤𝐴)
5746, 55sstrd 3941 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣𝐴)
5856, 57unssd 4141 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑤𝑣) ⊆ 𝐴)
5910, 11, 12pclclN 40013 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ AtLat ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
6054, 58, 59syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾))
61 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟𝐴)
62 ssun1 4127 . . . . . . . . . . . . . . . . . . . . . 22 𝑤 ⊆ (𝑤𝑣)
6362a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑤 ⊆ (𝑤𝑣))
6410, 12pclssN 40016 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑤 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
6554, 63, 58, 64syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑤) ⊆ (𝑈‘(𝑤𝑣)))
66 simp2l 1200 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈𝑤))
6765, 66sseldd 3931 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑝 ∈ (𝑈‘(𝑤𝑣)))
68 ssun2 4128 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 ⊆ (𝑤𝑣)
6968a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑣 ⊆ (𝑤𝑣))
7010, 12pclssN 40016 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ AtLat ∧ 𝑣 ⊆ (𝑤𝑣) ∧ (𝑤𝑣) ⊆ 𝐴) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
7154, 69, 58, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → (𝑈𝑣) ⊆ (𝑈‘(𝑤𝑣)))
72 simp13 1206 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈𝑣))
7371, 72sseldd 3931 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑞 ∈ (𝑈‘(𝑤𝑣)))
74 simp3r 1203 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))
75 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (le‘𝐾) = (le‘𝐾)
76 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (join‘𝐾) = (join‘𝐾)
7775, 76, 10, 11psubspi2N 39870 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ AtLat ∧ (𝑈‘(𝑤𝑣)) ∈ (PSubSp‘𝐾) ∧ 𝑟𝐴) ∧ (𝑝 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑞 ∈ (𝑈‘(𝑤𝑣)) ∧ 𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
7854, 60, 61, 67, 73, 74, 77syl33anc 1387 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 ∈ (𝑈‘(𝑤𝑣)))
79 fveq2 6830 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤𝑣) → (𝑈𝑦) = (𝑈‘(𝑤𝑣)))
8079eleq2d 2819 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤𝑣) → (𝑟 ∈ (𝑈𝑦) ↔ 𝑟 ∈ (𝑈‘(𝑤𝑣))))
8180rspcev 3573 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑣) ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑟 ∈ (𝑈‘(𝑤𝑣))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8253, 78, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
83 eliun 4947 . . . . . . . . . . . . . . . . 17 (𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑟 ∈ (𝑈𝑦))
8482, 83sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) ∧ (𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) ∧ (𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞))) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
85843exp 1119 . . . . . . . . . . . . . . 15 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → ((𝑝 ∈ (𝑈𝑤) ∧ (𝑤 ∈ Fin ∧ 𝑤𝑋)) → ((𝑟𝐴𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞)) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
8685exp5c 444 . . . . . . . . . . . . . 14 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ (𝑣 ∈ Fin ∧ 𝑣𝑋) ∧ 𝑞 ∈ (𝑈𝑣)) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
87863exp 1119 . . . . . . . . . . . . 13 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑣 ∈ Fin ∧ 𝑣𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8840, 87syl5 34 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑣 ∈ (Fin ∩ 𝒫 𝑋) → (𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))))
8988rexlimdv 3132 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑝 ∈ (𝑈𝑤) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9089com24 95 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑤 ∈ Fin ∧ 𝑤𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9136, 90syl5 34 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 ∈ (Fin ∩ 𝒫 𝑋) → (𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))))
9291rexlimdv 3132 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) → (∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))))
9392impd 410 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((∃𝑤 ∈ (Fin ∩ 𝒫 𝑋)𝑝 ∈ (𝑈𝑤) ∧ ∃𝑣 ∈ (Fin ∩ 𝒫 𝑋)𝑞 ∈ (𝑈𝑣)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9432, 93biimtrid 242 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → (𝑟𝐴 → (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9594ralrimdv 3131 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ((𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)) → ∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))))
9695ralrimivv 3174 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
9775, 76, 10, 11ispsubsp 39867 . . . . 5 (𝐾 ∈ AtLat → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9897adantr 480 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾) ↔ ( 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ 𝐴 ∧ ∀𝑝 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑞 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)∀𝑟𝐴 (𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))))
9921, 96, 98mpbir2and 713 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾))
100 snfi 8974 . . . . . . . . 9 {𝑤} ∈ Fin
101100a1i 11 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ Fin)
102 snelpwi 5389 . . . . . . . . 9 (𝑤𝑋 → {𝑤} ∈ 𝒫 𝑋)
103102adantl 481 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ 𝒫 𝑋)
104101, 103elind 4149 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (Fin ∩ 𝒫 𝑋))
105 vsnid 4617 . . . . . . . 8 𝑤 ∈ {𝑤}
106 simpll 766 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝐾 ∈ AtLat)
107 ssel2 3925 . . . . . . . . . . 11 ((𝑋𝐴𝑤𝑋) → 𝑤𝐴)
108107adantll 714 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤𝐴)
10910, 11snatpsubN 39872 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑤𝐴) → {𝑤} ∈ (PSubSp‘𝐾))
110106, 108, 109syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → {𝑤} ∈ (PSubSp‘𝐾))
11111, 12pclidN 40018 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ {𝑤} ∈ (PSubSp‘𝐾)) → (𝑈‘{𝑤}) = {𝑤})
112106, 110, 111syl2anc 584 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → (𝑈‘{𝑤}) = {𝑤})
113105, 112eleqtrrid 2840 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → 𝑤 ∈ (𝑈‘{𝑤}))
114 fveq2 6830 . . . . . . . . 9 (𝑦 = {𝑤} → (𝑈𝑦) = (𝑈‘{𝑤}))
115114eleq2d 2819 . . . . . . . 8 (𝑦 = {𝑤} → (𝑤 ∈ (𝑈𝑦) ↔ 𝑤 ∈ (𝑈‘{𝑤})))
116115rspcev 3573 . . . . . . 7 (({𝑤} ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑤 ∈ (𝑈‘{𝑤})) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
117104, 113, 116syl2anc 584 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑤𝑋) → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
118117ex 412 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋 → ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦)))
119 eliun 4947 . . . . 5 (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦))
120118, 119imbitrrdi 252 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤𝑋𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
121120ssrdv 3936 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
122 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑦𝑋)
123 simplr 768 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → 𝑋𝐴)
12410, 12pclssN 40016 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑦𝑋𝑋𝐴) → (𝑈𝑦) ⊆ (𝑈𝑋))
1256, 122, 123, 124syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑈𝑦) ⊆ (𝑈𝑋))
126125sseld 3929 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑋𝐴) ∧ 𝑦𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
127126ex 412 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦𝑋 → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
1285, 127syl5 34 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋))))
129128rexlimdv 3132 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑤 ∈ (𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
130119, 129biimtrid 242 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑤 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) → 𝑤 ∈ (𝑈𝑋)))
131130ssrdv 3936 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))
13211, 12pclbtwnN 40019 . . 3 (((𝐾 ∈ AtLat ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∈ (PSubSp‘𝐾)) ∧ (𝑋 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ∧ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ⊆ (𝑈𝑋))) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
1331, 99, 121, 131, 132syl22anc 838 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) = (𝑈𝑋))
134133eqcomd 2739 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cun 3896  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577   ciun 4943   class class class wbr 5095  cfv 6488  (class class class)co 7354  Fincfn 8877  lecple 17172  joincjn 18221  Atomscatm 39385  AtLatcal 39386  PSubSpcpsubsp 39618  PClcpclN 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-om 7805  df-1o 8393  df-en 8878  df-fin 8881  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-lat 18342  df-covers 39388  df-ats 39389  df-atl 39420  df-psubsp 39625  df-pclN 40010
This theorem is referenced by:  pclcmpatN  40023
  Copyright terms: Public domain W3C validator