Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem2 Structured version   Visualization version   GIF version

Theorem hbtlem2 43097
Description: Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem2.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)

Proof of Theorem hbtlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.p . . 3 𝑃 = (Poly1𝑅)
2 hbtlem.u . . 3 𝑈 = (LIdeal‘𝑃)
3 hbtlem.s . . 3 𝑆 = (ldgIdlSeq‘𝑅)
4 eqid 2729 . . 3 (deg1𝑅) = (deg1𝑅)
51, 2, 3, 4hbtlem1 43096 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
6 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑃) = (Base‘𝑃)
76, 2lidlss 21137 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
873ad2ant2 1134 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼 ⊆ (Base‘𝑃))
98sselda 3937 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑏 ∈ (Base‘𝑃))
10 eqid 2729 . . . . . . . . . 10 (coe1𝑏) = (coe1𝑏)
11 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1210, 6, 1, 11coe1f 22112 . . . . . . . . 9 (𝑏 ∈ (Base‘𝑃) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
139, 12syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
14 simpl3 1194 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑋 ∈ ℕ0)
1513, 14ffvelcdmd 7023 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → ((coe1𝑏)‘𝑋) ∈ (Base‘𝑅))
16 eleq1a 2823 . . . . . . 7 (((coe1𝑏)‘𝑋) ∈ (Base‘𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1715, 16syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1817adantld 490 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
1918rexlimdva 3130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
2019abssdv 4022 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅))
211ply1ring 22148 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22213ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑃 ∈ Ring)
23 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼𝑈)
24 eqid 2729 . . . . . . . 8 (0g𝑃) = (0g𝑃)
252, 24lidl0cl 21145 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
2622, 23, 25syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑃) ∈ 𝐼)
274, 1, 24deg1z 26008 . . . . . . . 8 (𝑅 ∈ Ring → ((deg1𝑅)‘(0g𝑃)) = -∞)
28273ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((deg1𝑅)‘(0g𝑃)) = -∞)
29 nn0ssre 12406 . . . . . . . . . 10 0 ⊆ ℝ
30 ressxr 11178 . . . . . . . . . 10 ℝ ⊆ ℝ*
3129, 30sstri 3947 . . . . . . . . 9 0 ⊆ ℝ*
32 simp3 1138 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
3331, 32sselid 3935 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℝ*)
34 mnfle 13055 . . . . . . . 8 (𝑋 ∈ ℝ* → -∞ ≤ 𝑋)
3533, 34syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → -∞ ≤ 𝑋)
3628, 35eqbrtrd 5117 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((deg1𝑅)‘(0g𝑃)) ≤ 𝑋)
37 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
381, 24, 37coe1z 22165 . . . . . . . . 9 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
39383ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
4039fveq1d 6828 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝑋) = ((ℕ0 × {(0g𝑅)})‘𝑋))
41 fvex 6839 . . . . . . . . 9 (0g𝑅) ∈ V
4241fvconst2 7144 . . . . . . . 8 (𝑋 ∈ ℕ0 → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
43423ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
4440, 43eqtr2d 2765 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))
45 fveq2 6826 . . . . . . . . 9 (𝑏 = (0g𝑃) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘(0g𝑃)))
4645breq1d 5105 . . . . . . . 8 (𝑏 = (0g𝑃) → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘(0g𝑃)) ≤ 𝑋))
47 fveq2 6826 . . . . . . . . . 10 (𝑏 = (0g𝑃) → (coe1𝑏) = (coe1‘(0g𝑃)))
4847fveq1d 6828 . . . . . . . . 9 (𝑏 = (0g𝑃) → ((coe1𝑏)‘𝑋) = ((coe1‘(0g𝑃))‘𝑋))
4948eqeq2d 2740 . . . . . . . 8 (𝑏 = (0g𝑃) → ((0g𝑅) = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋)))
5046, 49anbi12d 632 . . . . . . 7 (𝑏 = (0g𝑃) → ((((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))))
5150rspcev 3579 . . . . . 6 (((0g𝑃) ∈ 𝐼 ∧ (((deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5226, 36, 44, 51syl12anc 836 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
53 eqeq1 2733 . . . . . . . 8 (𝑎 = (0g𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5453anbi2d 630 . . . . . . 7 (𝑎 = (0g𝑅) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5554rexbidv 3153 . . . . . 6 (𝑎 = (0g𝑅) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5641, 55elab 3637 . . . . 5 ((0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5752, 56sylibr 234 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
5857ne0d 4295 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅)
5922adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑃 ∈ Ring)
60 simpl2 1193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼𝑈)
61 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (algSc‘𝑃) = (algSc‘𝑃)
621, 61, 11, 6ply1sclf 22187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
63623ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
6463adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
65 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑐 ∈ (Base‘𝑅))
6664, 65ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃))
67 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑓𝐼)
6867adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓𝐼)
69 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝑃) = (.r𝑃)
702, 6, 69lidlmcl 21150 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓𝐼)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
7159, 60, 66, 68, 70syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
72 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑔𝐼)
7372adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔𝐼)
74 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑃) = (+g𝑃)
752, 74lidlacl 21146 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼𝑔𝐼)) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
7659, 60, 71, 73, 75syl22anc 838 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
77 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑅 ∈ Ring)
788adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ⊆ (Base‘𝑃))
7978, 68sseldd 3938 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ (Base‘𝑃))
806, 69ringcl 20153 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8159, 66, 79, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8278, 73sseldd 3938 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ (Base‘𝑃))
83 simpl3 1194 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℕ0)
8431, 83sselid 3935 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℝ*)
854, 1, 6deg1xrcl 26003 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
8681, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
874, 1, 6deg1xrcl 26003 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑓) ∈ ℝ*)
8879, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑓) ∈ ℝ*)
894, 1, 11, 6, 69, 61deg1mul3le 26038 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ ((deg1𝑅)‘𝑓))
9077, 65, 79, 89syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ ((deg1𝑅)‘𝑓))
91 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → ((deg1𝑅)‘𝑓) ≤ 𝑋)
9291adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑓) ≤ 𝑋)
9386, 88, 84, 90, 92xrletrd 13082 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ 𝑋)
94 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → ((deg1𝑅)‘𝑔) ≤ 𝑋)
9594adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑔) ≤ 𝑋)
961, 4, 77, 6, 74, 81, 82, 84, 93, 95deg1addle2 26023 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋)
97 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (+g𝑅) = (+g𝑅)
981, 6, 74, 97coe1addfv 22167 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
9977, 81, 82, 83, 98syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
100 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (.r𝑅) = (.r𝑅)
1011, 6, 11, 61, 69, 100coe1sclmulfv 22185 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
10277, 65, 79, 83, 101syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
103102oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
10499, 103eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
105 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
106105breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋))
107 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (coe1𝑏) = (coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
108107fveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((coe1𝑏)‘𝑋) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
109108eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋)))
110106, 109anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))))
111110rspcev 3579 . . . . . . . . . . . . . . . . . . . . 21 ((((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼 ∧ (((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
11276, 96, 104, 111syl12anc 836 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
113 ovex 7386 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ V
114 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
115114anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
116115rexbidv 3153 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
117113, 116elab 3637 . . . . . . . . . . . . . . . . . . . 20 (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
118112, 117sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
119118exp45 438 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (𝑐 ∈ (Base‘𝑅) → ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
120119imp 406 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))
121120exp5c 444 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑓𝐼 → (((deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → (((deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))))
122121imp 406 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → (((deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → (((deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
123122imp41 425 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
124 oveq2 7361 . . . . . . . . . . . . . . 15 (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
125124eleq1d 2813 . . . . . . . . . . . . . 14 (𝑒 = ((coe1𝑔)‘𝑋) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
126123, 125syl5ibrcom 247 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
127126expimpd 453 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) → ((((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
128127rexlimdva 3130 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → (∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
129128alrimiv 1927 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒(∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
130 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑏)‘𝑋)))
131130anbi2d 630 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
132131rexbidv 3153 . . . . . . . . . . . 12 (𝑎 = 𝑒 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
133 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘𝑔))
134133breq1d 5105 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘𝑔) ≤ 𝑋))
135 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑔 → (coe1𝑏) = (coe1𝑔))
136135fveq1d 6828 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → ((coe1𝑏)‘𝑋) = ((coe1𝑔)‘𝑋))
137136eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → (𝑒 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑔)‘𝑋)))
138134, 137anbi12d 632 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
139138cbvrexvw 3208 . . . . . . . . . . . 12 (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)))
140132, 139bitrdi 287 . . . . . . . . . . 11 (𝑎 = 𝑒 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
141140ralab 3655 . . . . . . . . . 10 (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒(∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
142129, 141sylibr 234 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
143 oveq2 7361 . . . . . . . . . . . 12 (𝑑 = ((coe1𝑓)‘𝑋) → (𝑐(.r𝑅)𝑑) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
144143oveq1d 7368 . . . . . . . . . . 11 (𝑑 = ((coe1𝑓)‘𝑋) → ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒))
145144eleq1d 2813 . . . . . . . . . 10 (𝑑 = ((coe1𝑓)‘𝑋) → (((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
146145ralbidv 3152 . . . . . . . . 9 (𝑑 = ((coe1𝑓)‘𝑋) → (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
147142, 146syl5ibrcom 247 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → (𝑑 = ((coe1𝑓)‘𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
148147expimpd 453 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → ((((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
149148rexlimdva 3130 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
150149alrimiv 1927 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑(∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
151 eqeq1 2733 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑏)‘𝑋)))
152151anbi2d 630 . . . . . . . 8 (𝑎 = 𝑑 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
153152rexbidv 3153 . . . . . . 7 (𝑎 = 𝑑 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
154 fveq2 6826 . . . . . . . . . 10 (𝑏 = 𝑓 → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘𝑓))
155154breq1d 5105 . . . . . . . . 9 (𝑏 = 𝑓 → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘𝑓) ≤ 𝑋))
156 fveq2 6826 . . . . . . . . . . 11 (𝑏 = 𝑓 → (coe1𝑏) = (coe1𝑓))
157156fveq1d 6828 . . . . . . . . . 10 (𝑏 = 𝑓 → ((coe1𝑏)‘𝑋) = ((coe1𝑓)‘𝑋))
158157eqeq2d 2740 . . . . . . . . 9 (𝑏 = 𝑓 → (𝑑 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑓)‘𝑋)))
159155, 158anbi12d 632 . . . . . . . 8 (𝑏 = 𝑓 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
160159cbvrexvw 3208 . . . . . . 7 (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)))
161153, 160bitrdi 287 . . . . . 6 (𝑎 = 𝑑 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
162161ralab 3655 . . . . 5 (∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑑(∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
163150, 162sylibr 234 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
164163ralrimiva 3121 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165 hbtlem2.t . . . 4 𝑇 = (LIdeal‘𝑅)
166165, 11, 97, 100islidl 21140 . . 3 ({𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇 ↔ ({𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅) ∧ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅ ∧ ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
16720, 58, 164, 166syl3anbrc 1344 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇)
1685, 167eqeltrd 2828 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286  {csn 4579   class class class wbr 5095   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  -∞cmnf 11166  *cxr 11167  cle 11169  0cn0 12402  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  0gc0g 17361  Ringcrg 20136  LIdealclidl 21131  algSccascl 21777  Poly1cpl1 22077  coe1cco1 22078  deg1cdg1 25975  ldgIdlSeqcldgis 43094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-cnfld 21280  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mdeg 25976  df-deg1 25977  df-ldgis 43095
This theorem is referenced by:  hbtlem7  43098  hbtlem6  43102
  Copyright terms: Public domain W3C validator