Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem2 Structured version   Visualization version   GIF version

Theorem hbtlem2 42822
Description: Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem2.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)

Proof of Theorem hbtlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.p . . 3 𝑃 = (Poly1𝑅)
2 hbtlem.u . . 3 𝑈 = (LIdeal‘𝑃)
3 hbtlem.s . . 3 𝑆 = (ldgIdlSeq‘𝑅)
4 eqid 2726 . . 3 (deg1𝑅) = (deg1𝑅)
51, 2, 3, 4hbtlem1 42821 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
6 eqid 2726 . . . . . . . . . . . 12 (Base‘𝑃) = (Base‘𝑃)
76, 2lidlss 21197 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
873ad2ant2 1131 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼 ⊆ (Base‘𝑃))
98sselda 3978 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑏 ∈ (Base‘𝑃))
10 eqid 2726 . . . . . . . . . 10 (coe1𝑏) = (coe1𝑏)
11 eqid 2726 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1210, 6, 1, 11coe1f 22197 . . . . . . . . 9 (𝑏 ∈ (Base‘𝑃) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
139, 12syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
14 simpl3 1190 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑋 ∈ ℕ0)
1513, 14ffvelcdmd 7091 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → ((coe1𝑏)‘𝑋) ∈ (Base‘𝑅))
16 eleq1a 2821 . . . . . . 7 (((coe1𝑏)‘𝑋) ∈ (Base‘𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1715, 16syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1817adantld 489 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
1918rexlimdva 3145 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
2019abssdv 4061 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅))
211ply1ring 22233 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22213ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑃 ∈ Ring)
23 simp2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼𝑈)
24 eqid 2726 . . . . . . . 8 (0g𝑃) = (0g𝑃)
252, 24lidl0cl 21205 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
2622, 23, 25syl2anc 582 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑃) ∈ 𝐼)
274, 1, 24deg1z 26111 . . . . . . . 8 (𝑅 ∈ Ring → ((deg1𝑅)‘(0g𝑃)) = -∞)
28273ad2ant1 1130 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((deg1𝑅)‘(0g𝑃)) = -∞)
29 nn0ssre 12522 . . . . . . . . . 10 0 ⊆ ℝ
30 ressxr 11299 . . . . . . . . . 10 ℝ ⊆ ℝ*
3129, 30sstri 3988 . . . . . . . . 9 0 ⊆ ℝ*
32 simp3 1135 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
3331, 32sselid 3976 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℝ*)
34 mnfle 13162 . . . . . . . 8 (𝑋 ∈ ℝ* → -∞ ≤ 𝑋)
3533, 34syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → -∞ ≤ 𝑋)
3628, 35eqbrtrd 5167 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((deg1𝑅)‘(0g𝑃)) ≤ 𝑋)
37 eqid 2726 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
381, 24, 37coe1z 22250 . . . . . . . . 9 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
39383ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
4039fveq1d 6895 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝑋) = ((ℕ0 × {(0g𝑅)})‘𝑋))
41 fvex 6906 . . . . . . . . 9 (0g𝑅) ∈ V
4241fvconst2 7213 . . . . . . . 8 (𝑋 ∈ ℕ0 → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
43423ad2ant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
4440, 43eqtr2d 2767 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))
45 fveq2 6893 . . . . . . . . 9 (𝑏 = (0g𝑃) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘(0g𝑃)))
4645breq1d 5155 . . . . . . . 8 (𝑏 = (0g𝑃) → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘(0g𝑃)) ≤ 𝑋))
47 fveq2 6893 . . . . . . . . . 10 (𝑏 = (0g𝑃) → (coe1𝑏) = (coe1‘(0g𝑃)))
4847fveq1d 6895 . . . . . . . . 9 (𝑏 = (0g𝑃) → ((coe1𝑏)‘𝑋) = ((coe1‘(0g𝑃))‘𝑋))
4948eqeq2d 2737 . . . . . . . 8 (𝑏 = (0g𝑃) → ((0g𝑅) = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋)))
5046, 49anbi12d 630 . . . . . . 7 (𝑏 = (0g𝑃) → ((((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))))
5150rspcev 3607 . . . . . 6 (((0g𝑃) ∈ 𝐼 ∧ (((deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5226, 36, 44, 51syl12anc 835 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
53 eqeq1 2730 . . . . . . . 8 (𝑎 = (0g𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5453anbi2d 628 . . . . . . 7 (𝑎 = (0g𝑅) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5554rexbidv 3169 . . . . . 6 (𝑎 = (0g𝑅) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5641, 55elab 3665 . . . . 5 ((0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5752, 56sylibr 233 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
5857ne0d 4335 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅)
5922adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑃 ∈ Ring)
60 simpl2 1189 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼𝑈)
61 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (algSc‘𝑃) = (algSc‘𝑃)
621, 61, 11, 6ply1sclf 22272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
63623ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
6463adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
65 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑐 ∈ (Base‘𝑅))
6664, 65ffvelcdmd 7091 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃))
67 simprll 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑓𝐼)
6867adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓𝐼)
69 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝑃) = (.r𝑃)
702, 6, 69lidlmcl 21210 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓𝐼)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
7159, 60, 66, 68, 70syl22anc 837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
72 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑔𝐼)
7372adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔𝐼)
74 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑃) = (+g𝑃)
752, 74lidlacl 21206 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼𝑔𝐼)) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
7659, 60, 71, 73, 75syl22anc 837 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
77 simpl1 1188 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑅 ∈ Ring)
788adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ⊆ (Base‘𝑃))
7978, 68sseldd 3979 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ (Base‘𝑃))
806, 69ringcl 20229 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8159, 66, 79, 80syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8278, 73sseldd 3979 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ (Base‘𝑃))
83 simpl3 1190 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℕ0)
8431, 83sselid 3976 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℝ*)
854, 1, 6deg1xrcl 26106 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
8681, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
874, 1, 6deg1xrcl 26106 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (Base‘𝑃) → ((deg1𝑅)‘𝑓) ∈ ℝ*)
8879, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑓) ∈ ℝ*)
894, 1, 11, 6, 69, 61deg1mul3le 26141 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ ((deg1𝑅)‘𝑓))
9077, 65, 79, 89syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ ((deg1𝑅)‘𝑓))
91 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → ((deg1𝑅)‘𝑓) ≤ 𝑋)
9291adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑓) ≤ 𝑋)
9386, 88, 84, 90, 92xrletrd 13189 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ 𝑋)
94 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋))) → ((deg1𝑅)‘𝑔) ≤ 𝑋)
9594adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘𝑔) ≤ 𝑋)
961, 4, 77, 6, 74, 81, 82, 84, 93, 95deg1addle2 26126 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋)
97 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . 24 (+g𝑅) = (+g𝑅)
981, 6, 74, 97coe1addfv 22252 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
9977, 81, 82, 83, 98syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
100 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (.r𝑅) = (.r𝑅)
1011, 6, 11, 61, 69, 100coe1sclmulfv 22270 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
10277, 65, 79, 83, 101syl121anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
103102oveq1d 7431 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
10499, 103eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
105 fveq2 6893 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
106105breq1d 5155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋))
107 fveq2 6893 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (coe1𝑏) = (coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
108107fveq1d 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((coe1𝑏)‘𝑋) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
109108eqeq2d 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋)))
110106, 109anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))))
111110rspcev 3607 . . . . . . . . . . . . . . . . . . . . 21 ((((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼 ∧ (((deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
11276, 96, 104, 111syl12anc 835 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
113 ovex 7449 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ V
114 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
115114anbi2d 628 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
116115rexbidv 3169 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
117113, 116elab 3665 . . . . . . . . . . . . . . . . . . . 20 (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
118112, 117sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
119118exp45 437 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (𝑐 ∈ (Base‘𝑅) → ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
120119imp 405 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑓𝐼 ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))
121120exp5c 443 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑓𝐼 → (((deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → (((deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))))
122121imp 405 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → (((deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → (((deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
123122imp41 424 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
124 oveq2 7424 . . . . . . . . . . . . . . 15 (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
125124eleq1d 2811 . . . . . . . . . . . . . 14 (𝑒 = ((coe1𝑔)‘𝑋) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
126123, 125syl5ibrcom 246 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ ((deg1𝑅)‘𝑔) ≤ 𝑋) → (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
127126expimpd 452 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) → ((((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
128127rexlimdva 3145 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → (∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
129128alrimiv 1923 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒(∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
130 eqeq1 2730 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑏)‘𝑋)))
131130anbi2d 628 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
132131rexbidv 3169 . . . . . . . . . . . 12 (𝑎 = 𝑒 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
133 fveq2 6893 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘𝑔))
134133breq1d 5155 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘𝑔) ≤ 𝑋))
135 fveq2 6893 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑔 → (coe1𝑏) = (coe1𝑔))
136135fveq1d 6895 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → ((coe1𝑏)‘𝑋) = ((coe1𝑔)‘𝑋))
137136eqeq2d 2737 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → (𝑒 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑔)‘𝑋)))
138134, 137anbi12d 630 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
139138cbvrexvw 3226 . . . . . . . . . . . 12 (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)))
140132, 139bitrdi 286 . . . . . . . . . . 11 (𝑎 = 𝑒 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
141140ralab 3684 . . . . . . . . . 10 (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒(∃𝑔𝐼 (((deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
142129, 141sylibr 233 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
143 oveq2 7424 . . . . . . . . . . . 12 (𝑑 = ((coe1𝑓)‘𝑋) → (𝑐(.r𝑅)𝑑) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
144143oveq1d 7431 . . . . . . . . . . 11 (𝑑 = ((coe1𝑓)‘𝑋) → ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒))
145144eleq1d 2811 . . . . . . . . . 10 (𝑑 = ((coe1𝑓)‘𝑋) → (((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
146145ralbidv 3168 . . . . . . . . 9 (𝑑 = ((coe1𝑓)‘𝑋) → (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
147142, 146syl5ibrcom 246 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ ((deg1𝑅)‘𝑓) ≤ 𝑋) → (𝑑 = ((coe1𝑓)‘𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
148147expimpd 452 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → ((((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
149148rexlimdva 3145 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
150149alrimiv 1923 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑(∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
151 eqeq1 2730 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑏)‘𝑋)))
152151anbi2d 628 . . . . . . . 8 (𝑎 = 𝑑 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
153152rexbidv 3169 . . . . . . 7 (𝑎 = 𝑑 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
154 fveq2 6893 . . . . . . . . . 10 (𝑏 = 𝑓 → ((deg1𝑅)‘𝑏) = ((deg1𝑅)‘𝑓))
155154breq1d 5155 . . . . . . . . 9 (𝑏 = 𝑓 → (((deg1𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1𝑅)‘𝑓) ≤ 𝑋))
156 fveq2 6893 . . . . . . . . . . 11 (𝑏 = 𝑓 → (coe1𝑏) = (coe1𝑓))
157156fveq1d 6895 . . . . . . . . . 10 (𝑏 = 𝑓 → ((coe1𝑏)‘𝑋) = ((coe1𝑓)‘𝑋))
158157eqeq2d 2737 . . . . . . . . 9 (𝑏 = 𝑓 → (𝑑 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑓)‘𝑋)))
159155, 158anbi12d 630 . . . . . . . 8 (𝑏 = 𝑓 → ((((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
160159cbvrexvw 3226 . . . . . . 7 (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)))
161153, 160bitrdi 286 . . . . . 6 (𝑎 = 𝑑 → (∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
162161ralab 3684 . . . . 5 (∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑑(∃𝑓𝐼 (((deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
163150, 162sylibr 233 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
164163ralrimiva 3136 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165 hbtlem2.t . . . 4 𝑇 = (LIdeal‘𝑅)
166165, 11, 97, 100islidl 21200 . . 3 ({𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇 ↔ ({𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅) ∧ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅ ∧ ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
16720, 58, 164, 166syl3anbrc 1340 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇)
1685, 167eqeltrd 2826 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wal 1532   = wceq 1534  wcel 2099  {cab 2703  wne 2930  wral 3051  wrex 3060  wss 3946  c0 4322  {csn 4623   class class class wbr 5145   × cxp 5672  wf 6542  cfv 6546  (class class class)co 7416  cr 11148  -∞cmnf 11287  *cxr 11288  cle 11290  0cn0 12518  Basecbs 17208  +gcplusg 17261  .rcmulr 17262  0gc0g 17449  Ringcrg 20212  LIdealclidl 21191  algSccascl 21846  Poly1cpl1 22162  coe1cco1 22163  deg1cdg1 26075  ldgIdlSeqcldgis 42819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-ghm 19203  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-subrng 20524  df-subrg 20549  df-lmod 20834  df-lss 20905  df-sra 21147  df-rgmod 21148  df-lidl 21193  df-cnfld 21340  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168  df-mdeg 26076  df-deg1 26077  df-ldgis 42820
This theorem is referenced by:  hbtlem7  42823  hbtlem6  42827
  Copyright terms: Public domain W3C validator