Step | Hyp | Ref
| Expression |
1 | | hbtlem.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | hbtlem.u |
. . 3
⊢ 𝑈 = (LIdeal‘𝑃) |
3 | | hbtlem.s |
. . 3
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
5 | 1, 2, 3, 4 | hbtlem1 40948 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
6 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑃) =
(Base‘𝑃) |
7 | 6, 2 | lidlss 20481 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
8 | 7 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝐼 ⊆ (Base‘𝑃)) |
9 | 8 | sselda 3921 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑃)) |
10 | | eqid 2738 |
. . . . . . . . . 10
⊢
(coe1‘𝑏) = (coe1‘𝑏) |
11 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | 10, 6, 1, 11 | coe1f 21382 |
. . . . . . . . 9
⊢ (𝑏 ∈ (Base‘𝑃) →
(coe1‘𝑏):ℕ0⟶(Base‘𝑅)) |
13 | 9, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → (coe1‘𝑏):ℕ0⟶(Base‘𝑅)) |
14 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → 𝑋 ∈
ℕ0) |
15 | 13, 14 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → ((coe1‘𝑏)‘𝑋) ∈ (Base‘𝑅)) |
16 | | eleq1a 2834 |
. . . . . . 7
⊢
(((coe1‘𝑏)‘𝑋) ∈ (Base‘𝑅) → (𝑎 = ((coe1‘𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅))) |
17 | 15, 16 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → (𝑎 = ((coe1‘𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅))) |
18 | 17 | adantld 491 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅))) |
19 | 18 | rexlimdva 3213 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(∃𝑏 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅))) |
20 | 19 | abssdv 4002 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ (Base‘𝑅)) |
21 | 1 | ply1ring 21419 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
22 | 21 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑃 ∈ Ring) |
23 | | simp2 1136 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝐼 ∈ 𝑈) |
24 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑃) = (0g‘𝑃) |
25 | 2, 24 | lidl0cl 20483 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑃) ∈ 𝐼) |
26 | 22, 23, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑃)
∈ 𝐼) |
27 | 4, 1, 24 | deg1z 25252 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → ((
deg1 ‘𝑅)‘(0g‘𝑃)) = -∞) |
28 | 27 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((
deg1 ‘𝑅)‘(0g‘𝑃)) = -∞) |
29 | | nn0ssre 12237 |
. . . . . . . . . 10
⊢
ℕ0 ⊆ ℝ |
30 | | ressxr 11019 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
31 | 29, 30 | sstri 3930 |
. . . . . . . . 9
⊢
ℕ0 ⊆ ℝ* |
32 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℕ0) |
33 | 31, 32 | sselid 3919 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℝ*) |
34 | | mnfle 12870 |
. . . . . . . 8
⊢ (𝑋 ∈ ℝ*
→ -∞ ≤ 𝑋) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → -∞
≤ 𝑋) |
36 | 28, 35 | eqbrtrd 5096 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((
deg1 ‘𝑅)‘(0g‘𝑃)) ≤ 𝑋) |
37 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
38 | 1, 24, 37 | coe1z 21434 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
39 | 38 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
40 | 39 | fveq1d 6776 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((coe1‘(0g‘𝑃))‘𝑋) = ((ℕ0 ×
{(0g‘𝑅)})‘𝑋)) |
41 | | fvex 6787 |
. . . . . . . . 9
⊢
(0g‘𝑅) ∈ V |
42 | 41 | fvconst2 7079 |
. . . . . . . 8
⊢ (𝑋 ∈ ℕ0
→ ((ℕ0 × {(0g‘𝑅)})‘𝑋) = (0g‘𝑅)) |
43 | 42 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((ℕ0 × {(0g‘𝑅)})‘𝑋) = (0g‘𝑅)) |
44 | 40, 43 | eqtr2d 2779 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋)) |
45 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑏 = (0g‘𝑃) → (( deg1
‘𝑅)‘𝑏) = (( deg1
‘𝑅)‘(0g‘𝑃))) |
46 | 45 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑏 = (0g‘𝑃) → ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1 ‘𝑅)‘(0g‘𝑃)) ≤ 𝑋)) |
47 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑏 = (0g‘𝑃) →
(coe1‘𝑏) =
(coe1‘(0g‘𝑃))) |
48 | 47 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑏 = (0g‘𝑃) →
((coe1‘𝑏)‘𝑋) =
((coe1‘(0g‘𝑃))‘𝑋)) |
49 | 48 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑏 = (0g‘𝑃) →
((0g‘𝑅) =
((coe1‘𝑏)‘𝑋) ↔ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋))) |
50 | 46, 49 | anbi12d 631 |
. . . . . . 7
⊢ (𝑏 = (0g‘𝑃) → (((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘(0g‘𝑃)) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋)))) |
51 | 50 | rspcev 3561 |
. . . . . 6
⊢
(((0g‘𝑃) ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘(0g‘𝑃)) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋))) → ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
52 | 26, 36, 44, 51 | syl12anc 834 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
∃𝑏 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
53 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑎 = (0g‘𝑅) → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
54 | 53 | anbi2d 629 |
. . . . . . 7
⊢ (𝑎 = (0g‘𝑅) → (((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)))) |
55 | 54 | rexbidv 3226 |
. . . . . 6
⊢ (𝑎 = (0g‘𝑅) → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)))) |
56 | 41, 55 | elab 3609 |
. . . . 5
⊢
((0g‘𝑅) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
57 | 52, 56 | sylibr 233 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑅)
∈ {𝑎 ∣
∃𝑏 ∈ 𝐼 ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
58 | 57 | ne0d 4269 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ≠ ∅) |
59 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑃 ∈ Ring) |
60 | | simpl2 1191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ∈ 𝑈) |
61 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
62 | 1, 61, 11, 6 | ply1sclf 21456 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑅 ∈ Ring →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
63 | 62 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
65 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑐 ∈ (Base‘𝑅)) |
66 | 64, 65 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃)) |
67 | | simprll 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋))) → 𝑓 ∈ 𝐼) |
68 | 67 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ 𝐼) |
69 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(.r‘𝑃) = (.r‘𝑃) |
70 | 2, 6, 69 | lidlmcl 20488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ 𝐼)) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼) |
71 | 59, 60, 66, 68, 70 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼) |
72 | | simprrl 778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋))) → 𝑔 ∈ 𝐼) |
73 | 72 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ 𝐼) |
74 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(+g‘𝑃) = (+g‘𝑃) |
75 | 2, 74 | lidlacl 20484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼 ∧ 𝑔 ∈ 𝐼)) → ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼) |
76 | 59, 60, 71, 73, 75 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼) |
77 | | simpl1 1190 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑅 ∈ Ring) |
78 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ⊆ (Base‘𝑃)) |
79 | 78, 68 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ (Base‘𝑃)) |
80 | 6, 69 | ringcl 19800 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ Ring ∧
((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃)) |
81 | 59, 66, 79, 80 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃)) |
82 | 78, 73 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ (Base‘𝑃)) |
83 | | simpl3 1192 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈
ℕ0) |
84 | 31, 83 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈
ℝ*) |
85 | 4, 1, 6 | deg1xrcl 25247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃) → (( deg1 ‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ∈
ℝ*) |
86 | 81, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ∈
ℝ*) |
87 | 4, 1, 6 | deg1xrcl 25247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ (Base‘𝑃) → (( deg1
‘𝑅)‘𝑓) ∈
ℝ*) |
88 | 79, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘𝑓) ∈
ℝ*) |
89 | 4, 1, 11, 6, 69, 61 | deg1mul3le 25281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) → (( deg1 ‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ (( deg1 ‘𝑅)‘𝑓)) |
90 | 77, 65, 79, 89 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ (( deg1 ‘𝑅)‘𝑓)) |
91 | | simprlr 777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋))) → (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) |
92 | 91 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) |
93 | 86, 88, 84, 90, 92 | xrletrd 12896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ 𝑋) |
94 | | simprrr 779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋))) → (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) |
95 | 94 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) |
96 | 1, 4, 77, 6, 74, 81, 82, 84, 93, 95 | deg1addle2 25267 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1 ‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋) |
97 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(+g‘𝑅) = (+g‘𝑅) |
98 | 1, 6, 74, 97 | coe1addfv 21436 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧
(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) →
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋) =
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
99 | 77, 81, 82, 83, 98 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) →
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋) =
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
100 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(.r‘𝑅) = (.r‘𝑅) |
101 | 1, 6, 11, 61, 69, 100 | coe1sclmulfv 21454 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) →
((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
102 | 77, 65, 79, 83, 101 | syl121anc 1374 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) →
((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
103 | 102 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) →
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
104 | 99, 103 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)) |
105 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (( deg1 ‘𝑅)‘𝑏) = (( deg1 ‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))) |
106 | 105 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1 ‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋)) |
107 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (coe1‘𝑏) =
(coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))) |
108 | 107 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → ((coe1‘𝑏)‘𝑋) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)) |
109 | 108 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋) ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋))) |
110 | 106, 109 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)))) |
111 | 110 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼 ∧ ((( deg1 ‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋))) → ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
112 | 76, 96, 104, 111 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
113 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ V |
114 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
115 | 114 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)))) |
116 | 115 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)))) |
117 | 113, 116 | elab 3609 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
118 | 112, 117 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
119 | 118 | exp45 439 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → (𝑐 ∈ (Base‘𝑅) → ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → ((𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})))) |
120 | 119 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑓 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → ((𝑔 ∈ 𝐼 ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}))) |
121 | 120 | exp5c 445 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑓 ∈ 𝐼 → ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 → (𝑔 ∈ 𝐼 → ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}))))) |
122 | 121 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) → ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 → (𝑔 ∈ 𝐼 → ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})))) |
123 | 122 | imp41 426 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
124 | | oveq2 7283 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((coe1‘𝑔)‘𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
125 | 124 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((coe1‘𝑔)‘𝑋) → (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
126 | 123, 125 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋) → (𝑒 = ((coe1‘𝑔)‘𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
127 | 126 | expimpd 454 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) → (((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
128 | 127 | rexlimdva 3213 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → (∃𝑔 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
129 | 128 | alrimiv 1930 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒(∃𝑔 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
130 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑒 → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ 𝑒 = ((coe1‘𝑏)‘𝑋))) |
131 | 130 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑒 → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)))) |
132 | 131 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑒 → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)))) |
133 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑔 → (( deg1 ‘𝑅)‘𝑏) = (( deg1 ‘𝑅)‘𝑔)) |
134 | 133 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑔 → ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1 ‘𝑅)‘𝑔) ≤ 𝑋)) |
135 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑔 → (coe1‘𝑏) = (coe1‘𝑔)) |
136 | 135 | fveq1d 6776 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑔 → ((coe1‘𝑏)‘𝑋) = ((coe1‘𝑔)‘𝑋)) |
137 | 136 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑔 → (𝑒 = ((coe1‘𝑏)‘𝑋) ↔ 𝑒 = ((coe1‘𝑔)‘𝑋))) |
138 | 134, 137 | anbi12d 631 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑔 → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)))) |
139 | 138 | cbvrexvw 3384 |
. . . . . . . . . . . 12
⊢
(∃𝑏 ∈
𝐼 ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑔 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋))) |
140 | 132, 139 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑒 → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑔 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)))) |
141 | 140 | ralab 3628 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
{𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑒(∃𝑔 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
142 | 129, 141 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
143 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (𝑐(.r‘𝑅)𝑑) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
144 | 143 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒)) |
145 | 144 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
146 | 145 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
147 | 142, 146 | syl5ibrcom 246 |
. . . . . . . 8
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋) → (𝑑 = ((coe1‘𝑓)‘𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
148 | 147 | expimpd 454 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) → (((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
149 | 148 | rexlimdva 3213 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (∃𝑓 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
150 | 149 | alrimiv 1930 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑(∃𝑓 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
151 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ 𝑑 = ((coe1‘𝑏)‘𝑋))) |
152 | 151 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)))) |
153 | 152 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)))) |
154 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → (( deg1 ‘𝑅)‘𝑏) = (( deg1 ‘𝑅)‘𝑓)) |
155 | 154 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑏 = 𝑓 → ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1 ‘𝑅)‘𝑓) ≤ 𝑋)) |
156 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑓 → (coe1‘𝑏) = (coe1‘𝑓)) |
157 | 156 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → ((coe1‘𝑏)‘𝑋) = ((coe1‘𝑓)‘𝑋)) |
158 | 157 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑏 = 𝑓 → (𝑑 = ((coe1‘𝑏)‘𝑋) ↔ 𝑑 = ((coe1‘𝑓)‘𝑋))) |
159 | 155, 158 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑏 = 𝑓 → (((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)) ↔ ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)))) |
160 | 159 | cbvrexvw 3384 |
. . . . . . 7
⊢
(∃𝑏 ∈
𝐼 ((( deg1
‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑓 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋))) |
161 | 153, 160 | bitrdi 287 |
. . . . . 6
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑓 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)))) |
162 | 161 | ralab 3628 |
. . . . 5
⊢
(∀𝑑 ∈
{𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑑(∃𝑓 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
163 | 150, 162 | sylibr 233 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
164 | 163 | ralrimiva 3103 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
∀𝑐 ∈
(Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
165 | | hbtlem2.t |
. . . 4
⊢ 𝑇 = (LIdeal‘𝑅) |
166 | 165, 11, 97, 100 | islidl 20482 |
. . 3
⊢ ({𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ∈ 𝑇 ↔ ({𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ (Base‘𝑅) ∧ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ≠ ∅ ∧ ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
167 | 20, 58, 164, 166 | syl3anbrc 1342 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ∈ 𝑇) |
168 | 5, 167 | eqeltrd 2839 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) |