| Step | Hyp | Ref
| Expression |
| 1 | | hbtlem.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | | hbtlem.u |
. . 3
⊢ 𝑈 = (LIdeal‘𝑃) |
| 3 | | hbtlem.s |
. . 3
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| 4 | | eqid 2737 |
. . 3
⊢
(deg1‘𝑅) = (deg1‘𝑅) |
| 5 | 1, 2, 3, 4 | hbtlem1 43135 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 6 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 7 | 6, 2 | lidlss 21222 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
| 8 | 7 | 3ad2ant2 1135 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝐼 ⊆ (Base‘𝑃)) |
| 9 | 8 | sselda 3983 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑃)) |
| 10 | | eqid 2737 |
. . . . . . . . . 10
⊢
(coe1‘𝑏) = (coe1‘𝑏) |
| 11 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 12 | 10, 6, 1, 11 | coe1f 22213 |
. . . . . . . . 9
⊢ (𝑏 ∈ (Base‘𝑃) →
(coe1‘𝑏):ℕ0⟶(Base‘𝑅)) |
| 13 | 9, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → (coe1‘𝑏):ℕ0⟶(Base‘𝑅)) |
| 14 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → 𝑋 ∈
ℕ0) |
| 15 | 13, 14 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → ((coe1‘𝑏)‘𝑋) ∈ (Base‘𝑅)) |
| 16 | | eleq1a 2836 |
. . . . . . 7
⊢
(((coe1‘𝑏)‘𝑋) ∈ (Base‘𝑅) → (𝑎 = ((coe1‘𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅))) |
| 17 | 15, 16 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → (𝑎 = ((coe1‘𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅))) |
| 18 | 17 | adantld 490 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑏 ∈ 𝐼) → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅))) |
| 19 | 18 | rexlimdva 3155 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅))) |
| 20 | 19 | abssdv 4068 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ (Base‘𝑅)) |
| 21 | 1 | ply1ring 22249 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 22 | 21 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑃 ∈ Ring) |
| 23 | | simp2 1138 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝐼 ∈ 𝑈) |
| 24 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 25 | 2, 24 | lidl0cl 21230 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑃) ∈ 𝐼) |
| 26 | 22, 23, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑃)
∈ 𝐼) |
| 27 | 4, 1, 24 | deg1z 26126 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((deg1‘𝑅)‘(0g‘𝑃)) = -∞) |
| 28 | 27 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((deg1‘𝑅)‘(0g‘𝑃)) = -∞) |
| 29 | | nn0ssre 12530 |
. . . . . . . . . 10
⊢
ℕ0 ⊆ ℝ |
| 30 | | ressxr 11305 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
| 31 | 29, 30 | sstri 3993 |
. . . . . . . . 9
⊢
ℕ0 ⊆ ℝ* |
| 32 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℕ0) |
| 33 | 31, 32 | sselid 3981 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℝ*) |
| 34 | | mnfle 13177 |
. . . . . . . 8
⊢ (𝑋 ∈ ℝ*
→ -∞ ≤ 𝑋) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → -∞
≤ 𝑋) |
| 36 | 28, 35 | eqbrtrd 5165 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((deg1‘𝑅)‘(0g‘𝑃)) ≤ 𝑋) |
| 37 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 38 | 1, 24, 37 | coe1z 22266 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
| 39 | 38 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(coe1‘(0g‘𝑃)) = (ℕ0 ×
{(0g‘𝑅)})) |
| 40 | 39 | fveq1d 6908 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((coe1‘(0g‘𝑃))‘𝑋) = ((ℕ0 ×
{(0g‘𝑅)})‘𝑋)) |
| 41 | | fvex 6919 |
. . . . . . . . 9
⊢
(0g‘𝑅) ∈ V |
| 42 | 41 | fvconst2 7224 |
. . . . . . . 8
⊢ (𝑋 ∈ ℕ0
→ ((ℕ0 × {(0g‘𝑅)})‘𝑋) = (0g‘𝑅)) |
| 43 | 42 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
((ℕ0 × {(0g‘𝑅)})‘𝑋) = (0g‘𝑅)) |
| 44 | 40, 43 | eqtr2d 2778 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋)) |
| 45 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑏 = (0g‘𝑃) →
((deg1‘𝑅)‘𝑏) = ((deg1‘𝑅)‘(0g‘𝑃))) |
| 46 | 45 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑏 = (0g‘𝑃) →
(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1‘𝑅)‘(0g‘𝑃)) ≤ 𝑋)) |
| 47 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑏 = (0g‘𝑃) →
(coe1‘𝑏) =
(coe1‘(0g‘𝑃))) |
| 48 | 47 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑏 = (0g‘𝑃) →
((coe1‘𝑏)‘𝑋) =
((coe1‘(0g‘𝑃))‘𝑋)) |
| 49 | 48 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑏 = (0g‘𝑃) →
((0g‘𝑅) =
((coe1‘𝑏)‘𝑋) ↔ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋))) |
| 50 | 46, 49 | anbi12d 632 |
. . . . . . 7
⊢ (𝑏 = (0g‘𝑃) →
((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘(0g‘𝑃)) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋)))) |
| 51 | 50 | rspcev 3622 |
. . . . . 6
⊢
(((0g‘𝑃) ∈ 𝐼 ∧ (((deg1‘𝑅)‘(0g‘𝑃)) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘(0g‘𝑃))‘𝑋))) → ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
| 52 | 26, 36, 44, 51 | syl12anc 837 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
| 53 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑎 = (0g‘𝑅) → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
| 54 | 53 | anbi2d 630 |
. . . . . . 7
⊢ (𝑎 = (0g‘𝑅) →
((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)))) |
| 55 | 54 | rexbidv 3179 |
. . . . . 6
⊢ (𝑎 = (0g‘𝑅) → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋)))) |
| 56 | 41, 55 | elab 3679 |
. . . . 5
⊢
((0g‘𝑅) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ (0g‘𝑅) =
((coe1‘𝑏)‘𝑋))) |
| 57 | 52, 56 | sylibr 234 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(0g‘𝑅)
∈ {𝑎 ∣
∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 58 | 57 | ne0d 4342 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ≠ ∅) |
| 59 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑃 ∈ Ring) |
| 60 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ∈ 𝑈) |
| 61 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 62 | 1, 61, 11, 6 | ply1sclf 22288 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑅 ∈ Ring →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
| 63 | 62 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
(algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃)) |
| 65 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑐 ∈ (Base‘𝑅)) |
| 66 | 64, 65 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃)) |
| 67 | | simprll 779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋))) → 𝑓 ∈ 𝐼) |
| 68 | 67 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ 𝐼) |
| 69 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 70 | 2, 6, 69 | lidlmcl 21235 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ 𝐼)) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼) |
| 71 | 59, 60, 66, 68, 70 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼) |
| 72 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋))) → 𝑔 ∈ 𝐼) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ 𝐼) |
| 74 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 75 | 2, 74 | lidlacl 21231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ 𝐼 ∧ 𝑔 ∈ 𝐼)) → ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼) |
| 76 | 59, 60, 71, 73, 75 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼) |
| 77 | | simpl1 1192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑅 ∈ Ring) |
| 78 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ⊆ (Base‘𝑃)) |
| 79 | 78, 68 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ (Base‘𝑃)) |
| 80 | 6, 69 | ringcl 20247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ Ring ∧
((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃)) |
| 81 | 59, 66, 79, 80 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃)) |
| 82 | 78, 73 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ (Base‘𝑃)) |
| 83 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈
ℕ0) |
| 84 | 31, 83 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈
ℝ*) |
| 85 | 4, 1, 6 | deg1xrcl 26121 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃) → ((deg1‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ∈
ℝ*) |
| 86 | 81, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ∈
ℝ*) |
| 87 | 4, 1, 6 | deg1xrcl 26121 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ (Base‘𝑃) →
((deg1‘𝑅)‘𝑓) ∈
ℝ*) |
| 88 | 79, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘𝑓) ∈
ℝ*) |
| 89 | 4, 1, 11, 6, 69, 61 | deg1mul3le 26156 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) → ((deg1‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ ((deg1‘𝑅)‘𝑓)) |
| 90 | 77, 65, 79, 89 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ ((deg1‘𝑅)‘𝑓)) |
| 91 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋))) → ((deg1‘𝑅)‘𝑓) ≤ 𝑋) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘𝑓) ≤ 𝑋) |
| 93 | 86, 88, 84, 90, 92 | xrletrd 13204 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)) ≤ 𝑋) |
| 94 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋))) → ((deg1‘𝑅)‘𝑔) ≤ 𝑋) |
| 95 | 94 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘𝑔) ≤ 𝑋) |
| 96 | 1, 4, 77, 6, 74, 81, 82, 84, 93, 95 | deg1addle2 26141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((deg1‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋) |
| 97 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 98 | 1, 6, 74, 97 | coe1addfv 22268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧
(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓) ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) →
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋) =
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
| 99 | 77, 81, 82, 83, 98 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) →
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋) =
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
| 100 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 101 | 1, 6, 11, 61, 69, 100 | coe1sclmulfv 22286 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) →
((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
| 102 | 77, 65, 79, 83, 101 | syl121anc 1377 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) →
((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
| 103 | 102 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) →
(((coe1‘(((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓))‘𝑋)(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
| 104 | 99, 103 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)) |
| 105 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → ((deg1‘𝑅)‘𝑏) = ((deg1‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))) |
| 106 | 105 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋)) |
| 107 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (coe1‘𝑏) =
(coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))) |
| 108 | 107 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → ((coe1‘𝑏)‘𝑋) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)) |
| 109 | 108 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋) ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋))) |
| 110 | 106, 109 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋)))) |
| 111 | 110 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔) ∈ 𝐼 ∧ (((deg1‘𝑅)‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) =
((coe1‘((((algSc‘𝑃)‘𝑐)(.r‘𝑃)𝑓)(+g‘𝑃)𝑔))‘𝑋))) → ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
| 112 | 76, 96, 104, 111 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
| 113 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ V |
| 114 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
| 115 | 114 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)))) |
| 116 | 115 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋)))) |
| 117 | 113, 116 | elab 3679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) = ((coe1‘𝑏)‘𝑋))) |
| 118 | 112, 117 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 119 | 118 | exp45 438 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → (𝑐 ∈ (Base‘𝑅) → ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → ((𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})))) |
| 120 | 119 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑓 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → ((𝑔 ∈ 𝐼 ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}))) |
| 121 | 120 | exp5c 444 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑓 ∈ 𝐼 → (((deg1‘𝑅)‘𝑓) ≤ 𝑋 → (𝑔 ∈ 𝐼 → (((deg1‘𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}))))) |
| 122 | 121 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) → (((deg1‘𝑅)‘𝑓) ≤ 𝑋 → (𝑔 ∈ 𝐼 → (((deg1‘𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})))) |
| 123 | 122 | imp41 425 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 124 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((coe1‘𝑔)‘𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋))) |
| 125 | 124 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((coe1‘𝑔)‘𝑋) → (((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)((coe1‘𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 126 | 123, 125 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢
(((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑔) ≤ 𝑋) → (𝑒 = ((coe1‘𝑔)‘𝑋) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 127 | 126 | expimpd 453 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔 ∈ 𝐼) → ((((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 128 | 127 | rexlimdva 3155 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → (∃𝑔 ∈ 𝐼 (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 129 | 128 | alrimiv 1927 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒(∃𝑔 ∈ 𝐼 (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 130 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑒 → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ 𝑒 = ((coe1‘𝑏)‘𝑋))) |
| 131 | 130 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑒 → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)))) |
| 132 | 131 | rexbidv 3179 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑒 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)))) |
| 133 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑔 → ((deg1‘𝑅)‘𝑏) = ((deg1‘𝑅)‘𝑔)) |
| 134 | 133 | breq1d 5153 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑔 → (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1‘𝑅)‘𝑔) ≤ 𝑋)) |
| 135 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑔 → (coe1‘𝑏) = (coe1‘𝑔)) |
| 136 | 135 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑔 → ((coe1‘𝑏)‘𝑋) = ((coe1‘𝑔)‘𝑋)) |
| 137 | 136 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑔 → (𝑒 = ((coe1‘𝑏)‘𝑋) ↔ 𝑒 = ((coe1‘𝑔)‘𝑋))) |
| 138 | 134, 137 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑔 → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)))) |
| 139 | 138 | cbvrexvw 3238 |
. . . . . . . . . . . 12
⊢
(∃𝑏 ∈
𝐼
(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑔 ∈ 𝐼 (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋))) |
| 140 | 132, 139 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑒 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑔 ∈ 𝐼 (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)))) |
| 141 | 140 | ralab 3697 |
. . . . . . . . . 10
⊢
(∀𝑒 ∈
{𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑒(∃𝑔 ∈ 𝐼 (((deg1‘𝑅)‘𝑔) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑔)‘𝑋)) → ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 142 | 129, 141 | sylibr 234 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 143 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (𝑐(.r‘𝑅)𝑑) = (𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))) |
| 144 | 143 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) = ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒)) |
| 145 | 144 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 146 | 145 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑑 = ((coe1‘𝑓)‘𝑋) → (∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)((coe1‘𝑓)‘𝑋))(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 147 | 142, 146 | syl5ibrcom 247 |
. . . . . . . 8
⊢
(((((𝑅 ∈ Ring
∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) ∧ ((deg1‘𝑅)‘𝑓) ≤ 𝑋) → (𝑑 = ((coe1‘𝑓)‘𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 148 | 147 | expimpd 453 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓 ∈ 𝐼) → ((((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 149 | 148 | rexlimdva 3155 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (∃𝑓 ∈ 𝐼 (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 150 | 149 | alrimiv 1927 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑(∃𝑓 ∈ 𝐼 (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 151 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → (𝑎 = ((coe1‘𝑏)‘𝑋) ↔ 𝑑 = ((coe1‘𝑏)‘𝑋))) |
| 152 | 151 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)))) |
| 153 | 152 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)))) |
| 154 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → ((deg1‘𝑅)‘𝑏) = ((deg1‘𝑅)‘𝑓)) |
| 155 | 154 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑏 = 𝑓 → (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ↔ ((deg1‘𝑅)‘𝑓) ≤ 𝑋)) |
| 156 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑓 → (coe1‘𝑏) = (coe1‘𝑓)) |
| 157 | 156 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑓 → ((coe1‘𝑏)‘𝑋) = ((coe1‘𝑓)‘𝑋)) |
| 158 | 157 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑏 = 𝑓 → (𝑑 = ((coe1‘𝑏)‘𝑋) ↔ 𝑑 = ((coe1‘𝑓)‘𝑋))) |
| 159 | 155, 158 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑏 = 𝑓 → ((((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)) ↔ (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)))) |
| 160 | 159 | cbvrexvw 3238 |
. . . . . . 7
⊢
(∃𝑏 ∈
𝐼
(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑓 ∈ 𝐼 (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋))) |
| 161 | 153, 160 | bitrdi 287 |
. . . . . 6
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋)) ↔ ∃𝑓 ∈ 𝐼 (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)))) |
| 162 | 161 | ralab 3697 |
. . . . 5
⊢
(∀𝑑 ∈
{𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ↔ ∀𝑑(∃𝑓 ∈ 𝐼 (((deg1‘𝑅)‘𝑓) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 163 | 150, 162 | sylibr 234 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 164 | 163 | ralrimiva 3146 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) →
∀𝑐 ∈
(Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}) |
| 165 | | hbtlem2.t |
. . . 4
⊢ 𝑇 = (LIdeal‘𝑅) |
| 166 | 165, 11, 97, 100 | islidl 21225 |
. . 3
⊢ ({𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ∈ 𝑇 ↔ ({𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ⊆ (Base‘𝑅) ∧ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ≠ ∅ ∧ ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ((𝑐(.r‘𝑅)𝑑)(+g‘𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))})) |
| 167 | 20, 58, 164, 166 | syl3anbrc 1344 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑎 = ((coe1‘𝑏)‘𝑋))} ∈ 𝑇) |
| 168 | 5, 167 | eqeltrd 2841 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) |