Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem2 Structured version   Visualization version   GIF version

Theorem 1arithidomlem2 33514
Description: Lemma for 1arithidom 33515: induction step. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
1arithidomlem.13 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
1arithidomlem.14 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
1arithidomlem.15 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
Assertion
Ref Expression
1arithidomlem2 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Distinct variable groups:   · ,𝑔,𝑘,𝑢,𝑤   𝑆,𝑔,𝑘,𝑢,𝑤   𝑢,𝑁,𝑤   𝑢,𝑇,𝑤   𝑘,𝐾,𝑢,𝑤   𝑔,𝐻,𝑘,𝑢,𝑤   𝑔,𝐹,𝑘,𝑢,𝑤   𝑢,𝐶   𝑃,𝑔,𝑘,𝑢   𝑔,𝑀,𝑘,𝑢   𝑅,𝑔,𝑘,𝑢   𝑄,𝑔,𝑘,𝑢,𝑤   𝑈,𝑔,𝑘,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘)   𝐶(𝑤,𝑔,𝑘)   𝐷(𝑤,𝑢,𝑔,𝑘)   𝑃(𝑤)   𝑅(𝑤)   𝑇(𝑔,𝑘)   𝐺(𝑤,𝑢,𝑔,𝑘)   𝐽(𝑤,𝑢,𝑔,𝑘)   𝐾(𝑔)   𝑀(𝑤)   𝑁(𝑔,𝑘)

Proof of Theorem 1arithidomlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arithidom.f . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
2 ccatws1len 14592 . . . . . 6 (𝐹 ∈ Word 𝑃 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
31, 2syl 17 . . . . 5 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
4 1arithidomlem.15 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
54dmeqd 5872 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = dom (𝐷f · (𝐹𝐶)))
6 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
7 f1of 6803 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
8 iswrdi 14489 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
96, 7, 83syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
10 eqidd 2731 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
11 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
1210, 11wrdfd 14491 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
13 wrdco 14804 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
149, 12, 13syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
15 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
16 elfzo0 13668 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
1716simp2bi 1146 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
18 nnm1nn0 12490 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
1915, 17, 183syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
20 lenco 14805 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
219, 12, 20syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
22 lencl 14505 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
239, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
2421, 23eqeltrd 2829 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
25 lencl 14505 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
2611, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
2726nn0red 12511 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
2827lem1d 12123 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
296, 7syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
30 ffn 6691 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
31 hashfn 14347 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
3229, 30, 313syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
33 hashfzo0 14402 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3411, 25, 333syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3521, 32, 343eqtrrd 2770 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
3628, 35breqtrd 5136 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
37 elfz2nn0 13586 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
3819, 24, 36, 37syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
39 pfxfn 14653 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4014, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4140fndmd 6626 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (0..^((♯‘𝐻) − 1)))
42 eqid 2730 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
43 1arithidom.t . . . . . . . . . . . 12 · = (.r𝑅)
44 1arithidom.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ IDomn)
4544idomringd 20644 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ Ring)
47 1arithidom.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
4842, 47unitcl 20291 . . . . . . . . . . . . 13 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
4948ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑥 ∈ (Base‘𝑅))
50 1arithidom.i . . . . . . . . . . . . 13 𝑃 = (RPrime‘𝑅)
5144adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ IDomn)
52 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦𝑃)
5342, 50, 51, 52rprmcl 33496 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦 ∈ (Base‘𝑅))
5442, 43, 46, 49, 53ringcld 20176 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
55 1arithidomlem.13 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
56 elmapi 8825 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷:(0..^(♯‘𝐹))⟶𝑈)
5755, 56syl 17 . . . . . . . . . . 11 (𝜑𝐷:(0..^(♯‘𝐹))⟶𝑈)
58 eqidd 2731 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
5958, 1wrdfd 14491 . . . . . . . . . . . 12 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑃)
60 1arithidomlem.14 . . . . . . . . . . . . 13 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
61 f1of 6803 . . . . . . . . . . . . 13 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6260, 61syl 17 . . . . . . . . . . . 12 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6359, 62fcod 6716 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃)
64 ovexd 7425 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
65 inidm 4193 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
6654, 57, 63, 64, 64, 65off 7674 . . . . . . . . . 10 (𝜑 → (𝐷f · (𝐹𝐶)):(0..^(♯‘𝐹))⟶(Base‘𝑅))
6766fdmd 6701 . . . . . . . . 9 (𝜑 → dom (𝐷f · (𝐹𝐶)) = (0..^(♯‘𝐹)))
685, 41, 673eqtr3d 2773 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)))
69 lencl 14505 . . . . . . . . . 10 (𝐹 ∈ Word 𝑃 → (♯‘𝐹) ∈ ℕ0)
701, 69syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
7119, 70fzo0opth 32735 . . . . . . . 8 (𝜑 → ((0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)) ↔ ((♯‘𝐻) − 1) = (♯‘𝐹)))
7268, 71mpbid 232 . . . . . . 7 (𝜑 → ((♯‘𝐻) − 1) = (♯‘𝐹))
7372oveq1d 7405 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = ((♯‘𝐹) + 1))
7415, 17syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐻) ∈ ℕ)
7574nncnd 12209 . . . . . . 7 (𝜑 → (♯‘𝐻) ∈ ℂ)
76 npcan1 11610 . . . . . . 7 ((♯‘𝐻) ∈ ℂ → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7775, 76syl 17 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7873, 77eqtr3d 2767 . . . . 5 (𝜑 → ((♯‘𝐹) + 1) = (♯‘𝐻))
793, 78eqtrd 2765 . . . 4 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = (♯‘𝐻))
8079oveq2d 7406 . . 3 (𝜑 → (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)))
81 eqid 2730 . . . . . 6 (♯‘𝐶) = (♯‘𝐶)
82 eqid 2730 . . . . . 6 (0..^((♯‘𝐶) + 1)) = (0..^((♯‘𝐶) + 1))
83 f1ofn 6804 . . . . . . . . . 10 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶 Fn (0..^(♯‘𝐹)))
84 hashfn 14347 . . . . . . . . . 10 (𝐶 Fn (0..^(♯‘𝐹)) → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
8560, 83, 843syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
86 hashfzo0 14402 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8770, 86syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8885, 87eqtrd 2765 . . . . . . . 8 (𝜑 → (♯‘𝐶) = (♯‘𝐹))
8988oveq2d 7406 . . . . . . 7 (𝜑 → (0..^(♯‘𝐶)) = (0..^(♯‘𝐹)))
90 f1oeq23 6794 . . . . . . . 8 (((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) → (𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)) ↔ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
9190biimpar 477 . . . . . . 7 ((((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) ∧ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))) → 𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9289, 89, 60, 91syl21anc 837 . . . . . 6 (𝜑𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9381, 82, 92ccatws1f1o 32880 . . . . 5 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)))
9488s1eqd 14573 . . . . . . 7 (𝜑 → ⟨“(♯‘𝐶)”⟩ = ⟨“(♯‘𝐹)”⟩)
9594oveq2d 7406 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩) = (𝐶 ++ ⟨“(♯‘𝐹)”⟩))
9688oveq1d 7405 . . . . . . . 8 (𝜑 → ((♯‘𝐶) + 1) = ((♯‘𝐹) + 1))
9796, 78eqtrd 2765 . . . . . . 7 (𝜑 → ((♯‘𝐶) + 1) = (♯‘𝐻))
9897oveq2d 7406 . . . . . 6 (𝜑 → (0..^((♯‘𝐶) + 1)) = (0..^(♯‘𝐻)))
9995, 98, 98f1oeq123d 6797 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)) ↔ (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
10093, 99mpbid 232 . . . 4 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
101 f1ocnv 6815 . . . . 5 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1026, 101syl 17 . . . 4 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
103 f1oco 6826 . . . 4 (((𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
104100, 102, 103syl2anc 584 . . 3 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
105 f1oeq23 6794 . . . 4 (((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ↔ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
106105biimpar 477 . . 3 ((((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
10780, 80, 104, 106syl21anc 837 . 2 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
108 f1ofo 6810 . . . 4 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
1096, 108syl 17 . . 3 (𝜑𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
11012ffnd 6692 . . 3 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
111 iswrdi 14489 . . . . . . . . . . 11 (𝐷:(0..^(♯‘𝐹))⟶𝑈𝐷 ∈ Word 𝑈)
11257, 111syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ Word 𝑈)
113 ccatws1len 14592 . . . . . . . . . 10 (𝐷 ∈ Word 𝑈 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
114112, 113syl 17 . . . . . . . . 9 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
115 elmapfn 8841 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷 Fn (0..^(♯‘𝐹)))
116 hashfn 14347 . . . . . . . . . . . 12 (𝐷 Fn (0..^(♯‘𝐹)) → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
11755, 115, 1163syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
118117, 87eqtrd 2765 . . . . . . . . . 10 (𝜑 → (♯‘𝐷) = (♯‘𝐹))
119118oveq1d 7405 . . . . . . . . 9 (𝜑 → ((♯‘𝐷) + 1) = ((♯‘𝐹) + 1))
120114, 119, 783eqtrd 2769 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘𝐻))
121120oveq2d 7406 . . . . . . 7 (𝜑 → (0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩))) = (0..^(♯‘𝐻)))
122 eqidd 2731 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘(𝐷 ++ ⟨“𝑇”⟩)))
123 1arithidomlem.7 . . . . . . . . 9 (𝜑𝑇𝑈)
124 ccatws1cl 14588 . . . . . . . . 9 ((𝐷 ∈ Word 𝑈𝑇𝑈) → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
125112, 123, 124syl2anc 584 . . . . . . . 8 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
126122, 125wrdfd 14491 . . . . . . 7 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩)))⟶𝑈)
127121, 126feq2dd 6677 . . . . . 6 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘𝐻))⟶𝑈)
128127ffnd 6692 . . . . 5 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)))
129 f1of 6803 . . . . . 6 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
1306, 101, 1293syl 18 . . . . 5 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
131 fnfco 6728 . . . . 5 (((𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
132128, 130, 131syl2anc 584 . . . 4 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
13378oveq2d 7406 . . . . . . 7 (𝜑 → (0..^((♯‘𝐹) + 1)) = (0..^(♯‘𝐻)))
1343eqcomd 2736 . . . . . . . 8 (𝜑 → ((♯‘𝐹) + 1) = (♯‘(𝐹 ++ ⟨“𝑄”⟩)))
135 1arithidomlem.1 . . . . . . . . 9 (𝜑𝑄𝑃)
136 ccatws1cl 14588 . . . . . . . . 9 ((𝐹 ∈ Word 𝑃𝑄𝑃) → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
1371, 135, 136syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
138134, 137wrdfd 14491 . . . . . . 7 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^((♯‘𝐹) + 1))⟶𝑃)
139133, 138feq2dd 6677 . . . . . 6 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^(♯‘𝐻))⟶𝑃)
140139ffnd 6692 . . . . 5 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)))
141 fzossfzop1 13711 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
14270, 141syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
143 sswrd 14494 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)) → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
144142, 143syl 17 . . . . . . . . . 10 (𝜑 → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
145 iswrdi 14489 . . . . . . . . . . 11 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)) → 𝐶 ∈ Word (0..^(♯‘𝐹)))
14662, 145syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Word (0..^(♯‘𝐹)))
147144, 146sseldd 3950 . . . . . . . . 9 (𝜑𝐶 ∈ Word (0..^((♯‘𝐹) + 1)))
148 ccatws1len 14592 . . . . . . . . 9 (𝐶 ∈ Word (0..^((♯‘𝐹) + 1)) → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
149147, 148syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
150149, 96, 783eqtrrd 2770 . . . . . . 7 (𝜑 → (♯‘𝐻) = (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)))
151142, 133sseqtrd 3986 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐻)))
15262, 151fssd 6708 . . . . . . . . 9 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)))
153 iswrdi 14489 . . . . . . . . 9 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)) → 𝐶 ∈ Word (0..^(♯‘𝐻)))
154152, 153syl 17 . . . . . . . 8 (𝜑𝐶 ∈ Word (0..^(♯‘𝐻)))
155 fzonn0p1 13710 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
15670, 155syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
157156, 133eleqtrd 2831 . . . . . . . 8 (𝜑 → (♯‘𝐹) ∈ (0..^(♯‘𝐻)))
158 ccatws1cl 14588 . . . . . . . 8 ((𝐶 ∈ Word (0..^(♯‘𝐻)) ∧ (♯‘𝐹) ∈ (0..^(♯‘𝐻))) → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
159154, 157, 158syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
160150, 159wrdfd 14491 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
161160, 130fcod 6716 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
162 fnfco 6728 . . . . 5 (((𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
163140, 161, 162syl2anc 584 . . . 4 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
164 ovexd 7425 . . . 4 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
165 inidm 4193 . . . 4 ((0..^(♯‘𝐻)) ∩ (0..^(♯‘𝐻))) = (0..^(♯‘𝐻))
166132, 163, 164, 164, 165offn 7669 . . 3 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻)))
167 1arithidomlem.10 . . . 4 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
168 eqid 2730 . . . . . . . . 9 (♯‘𝐹) = (♯‘𝐹)
169168, 1, 135, 60ccatws1f1olast 32881 . . . . . . . 8 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((𝐹𝐶) ++ ⟨“𝑄”⟩))
170169oveq2d 7406 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)))
171123s1cld 14575 . . . . . . . 8 (𝜑 → ⟨“𝑇”⟩ ∈ Word 𝑈)
172 iswrdi 14489 . . . . . . . . 9 ((𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃 → (𝐹𝐶) ∈ Word 𝑃)
17363, 172syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ Word 𝑃)
174135s1cld 14575 . . . . . . . 8 (𝜑 → ⟨“𝑄”⟩ ∈ Word 𝑃)
175 lenco 14805 . . . . . . . . . 10 ((𝐶 ∈ Word (0..^(♯‘𝐹)) ∧ 𝐹:(0..^(♯‘𝐹))⟶𝑃) → (♯‘(𝐹𝐶)) = (♯‘𝐶))
176146, 59, 175syl2anc 584 . . . . . . . . 9 (𝜑 → (♯‘(𝐹𝐶)) = (♯‘𝐶))
17785, 176, 1173eqtr4rd 2776 . . . . . . . 8 (𝜑 → (♯‘𝐷) = (♯‘(𝐹𝐶)))
178 s1len 14578 . . . . . . . . . 10 (♯‘⟨“𝑇”⟩) = 1
179 s1len 14578 . . . . . . . . . 10 (♯‘⟨“𝑄”⟩) = 1
180178, 179eqtr4i 2756 . . . . . . . . 9 (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩)
181180a1i 11 . . . . . . . 8 (𝜑 → (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩))
182112, 171, 173, 174, 177, 181ofccat 14942 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
183170, 182eqtrd 2765 . . . . . 6 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
184139, 160fcod 6716 . . . . . . . . . . 11 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)):(0..^(♯‘𝐻))⟶𝑃)
185184ffnd 6692 . . . . . . . . . 10 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) Fn (0..^(♯‘𝐻)))
186128, 185, 130, 164, 164, 164, 165ofco 7681 . . . . . . . . 9 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)))
187186coeq1d 5828 . . . . . . . 8 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
188 coass 6241 . . . . . . . 8 ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆))
189187, 188eqtr3di 2780 . . . . . . 7 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)))
190 f1of1 6802 . . . . . . . . . 10 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
1916, 190syl 17 . . . . . . . . 9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
192 f1cocnv1 6833 . . . . . . . . 9 (𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)) → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
193191, 192syl 17 . . . . . . . 8 (𝜑 → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
194193coeq2d 5829 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))))
19554, 127, 184, 164, 164, 165off 7674 . . . . . . . 8 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅))
196 fcoi1 6737 . . . . . . . 8 (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅) → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
197195, 196syl 17 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
198189, 194, 1973eqtrd 2769 . . . . . 6 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
199 ofs1 14943 . . . . . . . . 9 ((𝑇𝑈𝑄𝑃) → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
200123, 135, 199syl2anc 584 . . . . . . . 8 (𝜑 → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
201 1arithidomlem.8 . . . . . . . . 9 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
202201s1eqd 14573 . . . . . . . 8 (𝜑 → ⟨“(𝑇 · 𝑄)”⟩ = ⟨“(𝐻𝐾)”⟩)
203200, 202eqtr2d 2766 . . . . . . 7 (𝜑 → ⟨“(𝐻𝐾)”⟩ = (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩))
2044, 203oveq12d 7408 . . . . . 6 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
205183, 198, 2043eqtr4rd 2776 . . . . 5 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
206 coass 6241 . . . . . . 7 (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆) = ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))
207206oveq2i 7401 . . . . . 6 (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))
208207coeq1i 5826 . . . . 5 ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)
209205, 208eqtrdi 2781 . . . 4 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
210167, 209eqtrd 2765 . . 3 (𝜑 → (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
211 cocan2 7270 . . . 4 ((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) → ((𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆) ↔ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
212211biimpa 476 . . 3 (((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) ∧ (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)) → 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
213109, 110, 166, 210, 212syl31anc 1375 . 2 (𝜑𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
214107, 213jca 511 1 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110   I cid 5535  ccnv 5640  dom cdm 5641  cres 5643  ccom 5645   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   prefix cpfx 14642  Basecbs 17186  .rcmulr 17228   Σg cgsu 17410  mulGrpcmgp 20056  Ringcrg 20149  rcdsr 20270  Unitcui 20271  RPrimecrpm 20348  IDomncidom 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mgp 20057  df-ring 20151  df-cring 20152  df-dvdsr 20273  df-unit 20274  df-rprm 20349  df-idom 20612
This theorem is referenced by:  1arithidom  33515
  Copyright terms: Public domain W3C validator