Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem2 Structured version   Visualization version   GIF version

Theorem 1arithidomlem2 33496
Description: Lemma for 1arithidom 33497: induction step. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
1arithidomlem.13 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
1arithidomlem.14 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
1arithidomlem.15 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
Assertion
Ref Expression
1arithidomlem2 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Distinct variable groups:   · ,𝑔,𝑘,𝑢,𝑤   𝑆,𝑔,𝑘,𝑢,𝑤   𝑢,𝑁,𝑤   𝑢,𝑇,𝑤   𝑘,𝐾,𝑢,𝑤   𝑔,𝐻,𝑘,𝑢,𝑤   𝑔,𝐹,𝑘,𝑢,𝑤   𝑢,𝐶   𝑃,𝑔,𝑘,𝑢   𝑔,𝑀,𝑘,𝑢   𝑅,𝑔,𝑘,𝑢   𝑄,𝑔,𝑘,𝑢,𝑤   𝑈,𝑔,𝑘,𝑢,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘)   𝐶(𝑤,𝑔,𝑘)   𝐷(𝑤,𝑢,𝑔,𝑘)   𝑃(𝑤)   𝑅(𝑤)   𝑇(𝑔,𝑘)   𝐺(𝑤,𝑢,𝑔,𝑘)   𝐽(𝑤,𝑢,𝑔,𝑘)   𝐾(𝑔)   𝑀(𝑤)   𝑁(𝑔,𝑘)

Proof of Theorem 1arithidomlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arithidom.f . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
2 ccatws1len 14525 . . . . . 6 (𝐹 ∈ Word 𝑃 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
31, 2syl 17 . . . . 5 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
4 1arithidomlem.15 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
54dmeqd 5845 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = dom (𝐷f · (𝐹𝐶)))
6 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
7 f1of 6763 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
8 iswrdi 14421 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
96, 7, 83syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
10 eqidd 2732 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
11 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
1210, 11wrdfd 14423 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
13 wrdco 14735 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
149, 12, 13syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
15 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
16 elfzo0 13597 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
1716simp2bi 1146 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
18 nnm1nn0 12419 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
1915, 17, 183syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
20 lenco 14736 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
219, 12, 20syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
22 lencl 14437 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
239, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
2421, 23eqeltrd 2831 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
25 lencl 14437 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
2611, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
2726nn0red 12440 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
2827lem1d 12052 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
296, 7syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
30 ffn 6651 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
31 hashfn 14279 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
3229, 30, 313syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
33 hashfzo0 14334 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3411, 25, 333syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3521, 32, 343eqtrrd 2771 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
3628, 35breqtrd 5117 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
37 elfz2nn0 13515 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
3819, 24, 36, 37syl3anbrc 1344 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
39 pfxfn 14586 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4014, 38, 39syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4140fndmd 6586 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (0..^((♯‘𝐻) − 1)))
42 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
43 1arithidom.t . . . . . . . . . . . 12 · = (.r𝑅)
44 1arithidom.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ IDomn)
4544idomringd 20641 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ Ring)
47 1arithidom.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
4842, 47unitcl 20291 . . . . . . . . . . . . 13 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
4948ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑥 ∈ (Base‘𝑅))
50 1arithidom.i . . . . . . . . . . . . 13 𝑃 = (RPrime‘𝑅)
5144adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ IDomn)
52 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦𝑃)
5342, 50, 51, 52rprmcl 33478 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦 ∈ (Base‘𝑅))
5442, 43, 46, 49, 53ringcld 20176 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
55 1arithidomlem.13 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
56 elmapi 8773 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷:(0..^(♯‘𝐹))⟶𝑈)
5755, 56syl 17 . . . . . . . . . . 11 (𝜑𝐷:(0..^(♯‘𝐹))⟶𝑈)
58 eqidd 2732 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
5958, 1wrdfd 14423 . . . . . . . . . . . 12 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑃)
60 1arithidomlem.14 . . . . . . . . . . . . 13 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
61 f1of 6763 . . . . . . . . . . . . 13 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6260, 61syl 17 . . . . . . . . . . . 12 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6359, 62fcod 6676 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃)
64 ovexd 7381 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
65 inidm 4177 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
6654, 57, 63, 64, 64, 65off 7628 . . . . . . . . . 10 (𝜑 → (𝐷f · (𝐹𝐶)):(0..^(♯‘𝐹))⟶(Base‘𝑅))
6766fdmd 6661 . . . . . . . . 9 (𝜑 → dom (𝐷f · (𝐹𝐶)) = (0..^(♯‘𝐹)))
685, 41, 673eqtr3d 2774 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)))
69 lencl 14437 . . . . . . . . . 10 (𝐹 ∈ Word 𝑃 → (♯‘𝐹) ∈ ℕ0)
701, 69syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
7119, 70fzo0opth 32780 . . . . . . . 8 (𝜑 → ((0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)) ↔ ((♯‘𝐻) − 1) = (♯‘𝐹)))
7268, 71mpbid 232 . . . . . . 7 (𝜑 → ((♯‘𝐻) − 1) = (♯‘𝐹))
7372oveq1d 7361 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = ((♯‘𝐹) + 1))
7415, 17syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐻) ∈ ℕ)
7574nncnd 12138 . . . . . . 7 (𝜑 → (♯‘𝐻) ∈ ℂ)
76 npcan1 11539 . . . . . . 7 ((♯‘𝐻) ∈ ℂ → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7775, 76syl 17 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7873, 77eqtr3d 2768 . . . . 5 (𝜑 → ((♯‘𝐹) + 1) = (♯‘𝐻))
793, 78eqtrd 2766 . . . 4 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = (♯‘𝐻))
8079oveq2d 7362 . . 3 (𝜑 → (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)))
81 eqid 2731 . . . . . 6 (♯‘𝐶) = (♯‘𝐶)
82 eqid 2731 . . . . . 6 (0..^((♯‘𝐶) + 1)) = (0..^((♯‘𝐶) + 1))
83 f1ofn 6764 . . . . . . . . . 10 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶 Fn (0..^(♯‘𝐹)))
84 hashfn 14279 . . . . . . . . . 10 (𝐶 Fn (0..^(♯‘𝐹)) → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
8560, 83, 843syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
86 hashfzo0 14334 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8770, 86syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8885, 87eqtrd 2766 . . . . . . . 8 (𝜑 → (♯‘𝐶) = (♯‘𝐹))
8988oveq2d 7362 . . . . . . 7 (𝜑 → (0..^(♯‘𝐶)) = (0..^(♯‘𝐹)))
90 f1oeq23 6754 . . . . . . . 8 (((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) → (𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)) ↔ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
9190biimpar 477 . . . . . . 7 ((((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) ∧ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))) → 𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9289, 89, 60, 91syl21anc 837 . . . . . 6 (𝜑𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9381, 82, 92ccatws1f1o 32927 . . . . 5 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)))
9488s1eqd 14506 . . . . . . 7 (𝜑 → ⟨“(♯‘𝐶)”⟩ = ⟨“(♯‘𝐹)”⟩)
9594oveq2d 7362 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩) = (𝐶 ++ ⟨“(♯‘𝐹)”⟩))
9688oveq1d 7361 . . . . . . . 8 (𝜑 → ((♯‘𝐶) + 1) = ((♯‘𝐹) + 1))
9796, 78eqtrd 2766 . . . . . . 7 (𝜑 → ((♯‘𝐶) + 1) = (♯‘𝐻))
9897oveq2d 7362 . . . . . 6 (𝜑 → (0..^((♯‘𝐶) + 1)) = (0..^(♯‘𝐻)))
9995, 98, 98f1oeq123d 6757 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)) ↔ (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
10093, 99mpbid 232 . . . 4 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
101 f1ocnv 6775 . . . . 5 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1026, 101syl 17 . . . 4 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
103 f1oco 6786 . . . 4 (((𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
104100, 102, 103syl2anc 584 . . 3 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
105 f1oeq23 6754 . . . 4 (((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ↔ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
106105biimpar 477 . . 3 ((((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
10780, 80, 104, 106syl21anc 837 . 2 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
108 f1ofo 6770 . . . 4 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
1096, 108syl 17 . . 3 (𝜑𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
11012ffnd 6652 . . 3 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
111 iswrdi 14421 . . . . . . . . . . 11 (𝐷:(0..^(♯‘𝐹))⟶𝑈𝐷 ∈ Word 𝑈)
11257, 111syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ Word 𝑈)
113 ccatws1len 14525 . . . . . . . . . 10 (𝐷 ∈ Word 𝑈 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
114112, 113syl 17 . . . . . . . . 9 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
115 elmapfn 8789 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷 Fn (0..^(♯‘𝐹)))
116 hashfn 14279 . . . . . . . . . . . 12 (𝐷 Fn (0..^(♯‘𝐹)) → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
11755, 115, 1163syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
118117, 87eqtrd 2766 . . . . . . . . . 10 (𝜑 → (♯‘𝐷) = (♯‘𝐹))
119118oveq1d 7361 . . . . . . . . 9 (𝜑 → ((♯‘𝐷) + 1) = ((♯‘𝐹) + 1))
120114, 119, 783eqtrd 2770 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘𝐻))
121120oveq2d 7362 . . . . . . 7 (𝜑 → (0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩))) = (0..^(♯‘𝐻)))
122 eqidd 2732 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘(𝐷 ++ ⟨“𝑇”⟩)))
123 1arithidomlem.7 . . . . . . . . 9 (𝜑𝑇𝑈)
124 ccatws1cl 14521 . . . . . . . . 9 ((𝐷 ∈ Word 𝑈𝑇𝑈) → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
125112, 123, 124syl2anc 584 . . . . . . . 8 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
126122, 125wrdfd 14423 . . . . . . 7 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩)))⟶𝑈)
127121, 126feq2dd 6637 . . . . . 6 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘𝐻))⟶𝑈)
128127ffnd 6652 . . . . 5 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)))
129 f1of 6763 . . . . . 6 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
1306, 101, 1293syl 18 . . . . 5 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
131 fnfco 6688 . . . . 5 (((𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
132128, 130, 131syl2anc 584 . . . 4 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
13378oveq2d 7362 . . . . . . 7 (𝜑 → (0..^((♯‘𝐹) + 1)) = (0..^(♯‘𝐻)))
1343eqcomd 2737 . . . . . . . 8 (𝜑 → ((♯‘𝐹) + 1) = (♯‘(𝐹 ++ ⟨“𝑄”⟩)))
135 1arithidomlem.1 . . . . . . . . 9 (𝜑𝑄𝑃)
136 ccatws1cl 14521 . . . . . . . . 9 ((𝐹 ∈ Word 𝑃𝑄𝑃) → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
1371, 135, 136syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
138134, 137wrdfd 14423 . . . . . . 7 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^((♯‘𝐹) + 1))⟶𝑃)
139133, 138feq2dd 6637 . . . . . 6 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^(♯‘𝐻))⟶𝑃)
140139ffnd 6652 . . . . 5 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)))
141 fzossfzop1 13640 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
14270, 141syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
143 sswrd 14426 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)) → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
144142, 143syl 17 . . . . . . . . . 10 (𝜑 → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
145 iswrdi 14421 . . . . . . . . . . 11 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)) → 𝐶 ∈ Word (0..^(♯‘𝐹)))
14662, 145syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Word (0..^(♯‘𝐹)))
147144, 146sseldd 3935 . . . . . . . . 9 (𝜑𝐶 ∈ Word (0..^((♯‘𝐹) + 1)))
148 ccatws1len 14525 . . . . . . . . 9 (𝐶 ∈ Word (0..^((♯‘𝐹) + 1)) → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
149147, 148syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
150149, 96, 783eqtrrd 2771 . . . . . . 7 (𝜑 → (♯‘𝐻) = (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)))
151142, 133sseqtrd 3971 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐻)))
15262, 151fssd 6668 . . . . . . . . 9 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)))
153 iswrdi 14421 . . . . . . . . 9 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)) → 𝐶 ∈ Word (0..^(♯‘𝐻)))
154152, 153syl 17 . . . . . . . 8 (𝜑𝐶 ∈ Word (0..^(♯‘𝐻)))
155 fzonn0p1 13639 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
15670, 155syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
157156, 133eleqtrd 2833 . . . . . . . 8 (𝜑 → (♯‘𝐹) ∈ (0..^(♯‘𝐻)))
158 ccatws1cl 14521 . . . . . . . 8 ((𝐶 ∈ Word (0..^(♯‘𝐻)) ∧ (♯‘𝐹) ∈ (0..^(♯‘𝐻))) → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
159154, 157, 158syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
160150, 159wrdfd 14423 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
161160, 130fcod 6676 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
162 fnfco 6688 . . . . 5 (((𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
163140, 161, 162syl2anc 584 . . . 4 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
164 ovexd 7381 . . . 4 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
165 inidm 4177 . . . 4 ((0..^(♯‘𝐻)) ∩ (0..^(♯‘𝐻))) = (0..^(♯‘𝐻))
166132, 163, 164, 164, 165offn 7623 . . 3 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻)))
167 1arithidomlem.10 . . . 4 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
168 eqid 2731 . . . . . . . . 9 (♯‘𝐹) = (♯‘𝐹)
169168, 1, 135, 60ccatws1f1olast 32928 . . . . . . . 8 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((𝐹𝐶) ++ ⟨“𝑄”⟩))
170169oveq2d 7362 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)))
171123s1cld 14508 . . . . . . . 8 (𝜑 → ⟨“𝑇”⟩ ∈ Word 𝑈)
172 iswrdi 14421 . . . . . . . . 9 ((𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃 → (𝐹𝐶) ∈ Word 𝑃)
17363, 172syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ Word 𝑃)
174135s1cld 14508 . . . . . . . 8 (𝜑 → ⟨“𝑄”⟩ ∈ Word 𝑃)
175 lenco 14736 . . . . . . . . . 10 ((𝐶 ∈ Word (0..^(♯‘𝐹)) ∧ 𝐹:(0..^(♯‘𝐹))⟶𝑃) → (♯‘(𝐹𝐶)) = (♯‘𝐶))
176146, 59, 175syl2anc 584 . . . . . . . . 9 (𝜑 → (♯‘(𝐹𝐶)) = (♯‘𝐶))
17785, 176, 1173eqtr4rd 2777 . . . . . . . 8 (𝜑 → (♯‘𝐷) = (♯‘(𝐹𝐶)))
178 s1len 14511 . . . . . . . . . 10 (♯‘⟨“𝑇”⟩) = 1
179 s1len 14511 . . . . . . . . . 10 (♯‘⟨“𝑄”⟩) = 1
180178, 179eqtr4i 2757 . . . . . . . . 9 (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩)
181180a1i 11 . . . . . . . 8 (𝜑 → (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩))
182112, 171, 173, 174, 177, 181ofccat 14873 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
183170, 182eqtrd 2766 . . . . . 6 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
184139, 160fcod 6676 . . . . . . . . . . 11 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)):(0..^(♯‘𝐻))⟶𝑃)
185184ffnd 6652 . . . . . . . . . 10 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) Fn (0..^(♯‘𝐻)))
186128, 185, 130, 164, 164, 164, 165ofco 7635 . . . . . . . . 9 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)))
187186coeq1d 5801 . . . . . . . 8 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
188 coass 6213 . . . . . . . 8 ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆))
189187, 188eqtr3di 2781 . . . . . . 7 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)))
190 f1of1 6762 . . . . . . . . . 10 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
1916, 190syl 17 . . . . . . . . 9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
192 f1cocnv1 6793 . . . . . . . . 9 (𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)) → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
193191, 192syl 17 . . . . . . . 8 (𝜑 → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
194193coeq2d 5802 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))))
19554, 127, 184, 164, 164, 165off 7628 . . . . . . . 8 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅))
196 fcoi1 6697 . . . . . . . 8 (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅) → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
197195, 196syl 17 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
198189, 194, 1973eqtrd 2770 . . . . . 6 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
199 ofs1 14874 . . . . . . . . 9 ((𝑇𝑈𝑄𝑃) → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
200123, 135, 199syl2anc 584 . . . . . . . 8 (𝜑 → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
201 1arithidomlem.8 . . . . . . . . 9 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
202201s1eqd 14506 . . . . . . . 8 (𝜑 → ⟨“(𝑇 · 𝑄)”⟩ = ⟨“(𝐻𝐾)”⟩)
203200, 202eqtr2d 2767 . . . . . . 7 (𝜑 → ⟨“(𝐻𝐾)”⟩ = (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩))
2044, 203oveq12d 7364 . . . . . 6 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
205183, 198, 2043eqtr4rd 2777 . . . . 5 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
206 coass 6213 . . . . . . 7 (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆) = ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))
207206oveq2i 7357 . . . . . 6 (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))
208207coeq1i 5799 . . . . 5 ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)
209205, 208eqtrdi 2782 . . . 4 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
210167, 209eqtrd 2766 . . 3 (𝜑 → (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
211 cocan2 7226 . . . 4 ((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) → ((𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆) ↔ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
212211biimpa 476 . . 3 (((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) ∧ (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)) → 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
213109, 110, 166, 210, 212syl31anc 1375 . 2 (𝜑𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
214107, 213jca 511 1 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091   I cid 5510  ccnv 5615  dom cdm 5616  cres 5618  ccom 5620   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417   ++ cconcat 14474  ⟨“cs1 14500   prefix cpfx 14575  Basecbs 17117  .rcmulr 17159   Σg cgsu 17341  mulGrpcmgp 20056  Ringcrg 20149  rcdsr 20270  Unitcui 20271  RPrimecrpm 20348  IDomncidom 20606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mgp 20057  df-ring 20151  df-cring 20152  df-dvdsr 20273  df-unit 20274  df-rprm 20349  df-idom 20609
This theorem is referenced by:  1arithidom  33497
  Copyright terms: Public domain W3C validator