Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithidomlem2 Structured version   Visualization version   GIF version

Theorem 1arithidomlem2 33529
Description: Lemma for 1arithidom 33530: induction step. (Contributed by Thierry Arnoux, 27-May-2025.)
Hypotheses
Ref Expression
1arithidom.u 𝑈 = (Unit‘𝑅)
1arithidom.i 𝑃 = (RPrime‘𝑅)
1arithidom.m 𝑀 = (mulGrp‘𝑅)
1arithidom.t · = (.r𝑅)
1arithidom.j 𝐽 = (0..^(♯‘𝐹))
1arithidom.r (𝜑𝑅 ∈ IDomn)
1arithidom.f (𝜑𝐹 ∈ Word 𝑃)
1arithidom.g (𝜑𝐺 ∈ Word 𝑃)
1arithidom.1 (𝜑 → (𝑀 Σg 𝐹) = (𝑀 Σg 𝐺))
1arithidomlem.1 (𝜑𝑄𝑃)
1arithidomlem.2 (𝜑 → ∀𝑔 ∈ Word 𝑃(∃𝑘𝑈 (𝑀 Σg 𝐹) = (𝑘 · (𝑀 Σg 𝑔)) → ∃𝑤𝑢 ∈ (𝑈m (0..^(♯‘𝐹)))(𝑤:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) ∧ 𝑔 = (𝑢f · (𝐹𝑤)))))
1arithidomlem.3 (𝜑𝐻 ∈ Word 𝑃)
1arithidomlem.4 (𝜑 → ∃𝑘𝑈 (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑘 · (𝑀 Σg 𝐻)))
1arithidomlem.5 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
1arithidomlem.6 (𝜑𝑄(∥r𝑅)(𝐻𝐾))
1arithidomlem.7 (𝜑𝑇𝑈)
1arithidomlem.8 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
1arithidomlem.9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1arithidomlem.10 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
1arithidomlem.11 (𝜑𝑁𝑈)
1arithidomlem.12 (𝜑 → (𝑀 Σg (𝐹 ++ ⟨“𝑄”⟩)) = (𝑁 · (𝑀 Σg 𝐻)))
1arithidomlem.13 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
1arithidomlem.14 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
1arithidomlem.15 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
Assertion
Ref Expression
1arithidomlem2 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Distinct variable groups:   · ,𝑔,𝑘,𝑢,𝑤   𝑢,𝐶   𝑔,𝐹,𝑘,𝑢,𝑤   𝑔,𝐻,𝑢,𝑤,𝑘   𝑘,𝐾,𝑢,𝑤   𝑔,𝑀,𝑢,𝑘   𝑢,𝑁,𝑤   𝑃,𝑔,𝑢,𝑘   𝑅,𝑔,𝑢,𝑘   𝑆,𝑔,𝑢,𝑤,𝑘   𝑢,𝑇,𝑤   𝑈,𝑔,𝑢,𝑤,𝑘   𝑄,𝑔,𝑢,𝑤,𝑘
Allowed substitution hints:   𝜑(𝑤,𝑢,𝑔,𝑘)   𝐶(𝑤,𝑔,𝑘)   𝐷(𝑤,𝑢,𝑔,𝑘)   𝑃(𝑤)   𝑅(𝑤)   𝑇(𝑔,𝑘)   𝐺(𝑤,𝑢,𝑔,𝑘)   𝐽(𝑤,𝑢,𝑔,𝑘)   𝐾(𝑔)   𝑀(𝑤)   𝑁(𝑔,𝑘)

Proof of Theorem 1arithidomlem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1arithidom.f . . . . . 6 (𝜑𝐹 ∈ Word 𝑃)
2 ccatws1len 14668 . . . . . 6 (𝐹 ∈ Word 𝑃 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
31, 2syl 17 . . . . 5 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = ((♯‘𝐹) + 1))
4 1arithidomlem.15 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (𝐷f · (𝐹𝐶)))
54dmeqd 5930 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = dom (𝐷f · (𝐹𝐶)))
6 1arithidomlem.9 . . . . . . . . . . . . 13 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
7 f1of 6862 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
8 iswrdi 14566 . . . . . . . . . . . . 13 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 ∈ Word (0..^(♯‘𝐻)))
96, 7, 83syl 18 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Word (0..^(♯‘𝐻)))
10 eqidd 2741 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘𝐻))
11 1arithidomlem.3 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ Word 𝑃)
1210, 11wrdfd 32900 . . . . . . . . . . . 12 (𝜑𝐻:(0..^(♯‘𝐻))⟶𝑃)
13 wrdco 14880 . . . . . . . . . . . 12 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (𝐻𝑆) ∈ Word 𝑃)
149, 12, 13syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐻𝑆) ∈ Word 𝑃)
15 1arithidomlem.5 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (0..^(♯‘𝐻)))
16 elfzo0 13757 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝐻)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝐻) ∈ ℕ ∧ 𝐾 < (♯‘𝐻)))
1716simp2bi 1146 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝐻)) → (♯‘𝐻) ∈ ℕ)
18 nnm1nn0 12594 . . . . . . . . . . . . 13 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
1915, 17, 183syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
20 lenco 14881 . . . . . . . . . . . . . 14 ((𝑆 ∈ Word (0..^(♯‘𝐻)) ∧ 𝐻:(0..^(♯‘𝐻))⟶𝑃) → (♯‘(𝐻𝑆)) = (♯‘𝑆))
219, 12, 20syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝐻𝑆)) = (♯‘𝑆))
22 lencl 14581 . . . . . . . . . . . . . 14 (𝑆 ∈ Word (0..^(♯‘𝐻)) → (♯‘𝑆) ∈ ℕ0)
239, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑆) ∈ ℕ0)
2421, 23eqeltrd 2844 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐻𝑆)) ∈ ℕ0)
25 lencl 14581 . . . . . . . . . . . . . . . 16 (𝐻 ∈ Word 𝑃 → (♯‘𝐻) ∈ ℕ0)
2611, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝐻) ∈ ℕ0)
2726nn0red 12614 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐻) ∈ ℝ)
2827lem1d 12228 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘𝐻))
296, 7syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
30 ffn 6747 . . . . . . . . . . . . . . 15 (𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)) → 𝑆 Fn (0..^(♯‘𝐻)))
31 hashfn 14424 . . . . . . . . . . . . . . 15 (𝑆 Fn (0..^(♯‘𝐻)) → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
3229, 30, 313syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑆) = (♯‘(0..^(♯‘𝐻))))
33 hashfzo0 14479 . . . . . . . . . . . . . . 15 ((♯‘𝐻) ∈ ℕ0 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3411, 25, 333syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(0..^(♯‘𝐻))) = (♯‘𝐻))
3521, 32, 343eqtrrd 2785 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = (♯‘(𝐻𝑆)))
3628, 35breqtrd 5192 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆)))
37 elfz2nn0 13675 . . . . . . . . . . . 12 (((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))) ↔ (((♯‘𝐻) − 1) ∈ ℕ0 ∧ (♯‘(𝐻𝑆)) ∈ ℕ0 ∧ ((♯‘𝐻) − 1) ≤ (♯‘(𝐻𝑆))))
3819, 24, 36, 37syl3anbrc 1343 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆))))
39 pfxfn 14729 . . . . . . . . . . 11 (((𝐻𝑆) ∈ Word 𝑃 ∧ ((♯‘𝐻) − 1) ∈ (0...(♯‘(𝐻𝑆)))) → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4014, 38, 39syl2anc 583 . . . . . . . . . 10 (𝜑 → ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) Fn (0..^((♯‘𝐻) − 1)))
4140fndmd 6684 . . . . . . . . 9 (𝜑 → dom ((𝐻𝑆) prefix ((♯‘𝐻) − 1)) = (0..^((♯‘𝐻) − 1)))
42 eqid 2740 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
43 1arithidom.t . . . . . . . . . . . 12 · = (.r𝑅)
44 1arithidom.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ IDomn)
4544idomringd 20750 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ Ring)
47 1arithidom.u . . . . . . . . . . . . . 14 𝑈 = (Unit‘𝑅)
4842, 47unitcl 20401 . . . . . . . . . . . . 13 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
4948ad2antrl 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑥 ∈ (Base‘𝑅))
50 1arithidom.i . . . . . . . . . . . . 13 𝑃 = (RPrime‘𝑅)
5144adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑅 ∈ IDomn)
52 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦𝑃)
5342, 50, 51, 52rprmcl 33511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → 𝑦 ∈ (Base‘𝑅))
5442, 43, 46, 49, 53ringcld 20286 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑈𝑦𝑃)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
55 1arithidomlem.13 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (𝑈m (0..^(♯‘𝐹))))
56 elmapi 8907 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷:(0..^(♯‘𝐹))⟶𝑈)
5755, 56syl 17 . . . . . . . . . . 11 (𝜑𝐷:(0..^(♯‘𝐹))⟶𝑈)
58 eqidd 2741 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) = (♯‘𝐹))
5958, 1wrdfd 32900 . . . . . . . . . . . 12 (𝜑𝐹:(0..^(♯‘𝐹))⟶𝑃)
60 1arithidomlem.14 . . . . . . . . . . . . 13 (𝜑𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)))
61 f1of 6862 . . . . . . . . . . . . 13 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6260, 61syl 17 . . . . . . . . . . . 12 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)))
6359, 62fcod 6773 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃)
64 ovexd 7483 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
65 inidm 4248 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
6654, 57, 63, 64, 64, 65off 7732 . . . . . . . . . 10 (𝜑 → (𝐷f · (𝐹𝐶)):(0..^(♯‘𝐹))⟶(Base‘𝑅))
6766fdmd 6757 . . . . . . . . 9 (𝜑 → dom (𝐷f · (𝐹𝐶)) = (0..^(♯‘𝐹)))
685, 41, 673eqtr3d 2788 . . . . . . . 8 (𝜑 → (0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)))
69 lencl 14581 . . . . . . . . . 10 (𝐹 ∈ Word 𝑃 → (♯‘𝐹) ∈ ℕ0)
701, 69syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
7119, 70fzo0opth 32810 . . . . . . . 8 (𝜑 → ((0..^((♯‘𝐻) − 1)) = (0..^(♯‘𝐹)) ↔ ((♯‘𝐻) − 1) = (♯‘𝐹)))
7268, 71mpbid 232 . . . . . . 7 (𝜑 → ((♯‘𝐻) − 1) = (♯‘𝐹))
7372oveq1d 7463 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = ((♯‘𝐹) + 1))
7415, 17syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐻) ∈ ℕ)
7574nncnd 12309 . . . . . . 7 (𝜑 → (♯‘𝐻) ∈ ℂ)
76 npcan1 11715 . . . . . . 7 ((♯‘𝐻) ∈ ℂ → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7775, 76syl 17 . . . . . 6 (𝜑 → (((♯‘𝐻) − 1) + 1) = (♯‘𝐻))
7873, 77eqtr3d 2782 . . . . 5 (𝜑 → ((♯‘𝐹) + 1) = (♯‘𝐻))
793, 78eqtrd 2780 . . . 4 (𝜑 → (♯‘(𝐹 ++ ⟨“𝑄”⟩)) = (♯‘𝐻))
8079oveq2d 7464 . . 3 (𝜑 → (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)))
81 eqid 2740 . . . . . 6 (♯‘𝐶) = (♯‘𝐶)
82 eqid 2740 . . . . . 6 (0..^((♯‘𝐶) + 1)) = (0..^((♯‘𝐶) + 1))
83 f1ofn 6863 . . . . . . . . . 10 (𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹)) → 𝐶 Fn (0..^(♯‘𝐹)))
84 hashfn 14424 . . . . . . . . . 10 (𝐶 Fn (0..^(♯‘𝐹)) → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
8560, 83, 843syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐶) = (♯‘(0..^(♯‘𝐹))))
86 hashfzo0 14479 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8770, 86syl 17 . . . . . . . . 9 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8885, 87eqtrd 2780 . . . . . . . 8 (𝜑 → (♯‘𝐶) = (♯‘𝐹))
8988oveq2d 7464 . . . . . . 7 (𝜑 → (0..^(♯‘𝐶)) = (0..^(♯‘𝐹)))
90 f1oeq23 6853 . . . . . . . 8 (((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) → (𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)) ↔ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))))
9190biimpar 477 . . . . . . 7 ((((0..^(♯‘𝐶)) = (0..^(♯‘𝐹)) ∧ (0..^(♯‘𝐶)) = (0..^(♯‘𝐹))) ∧ 𝐶:(0..^(♯‘𝐹))–1-1-onto→(0..^(♯‘𝐹))) → 𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9289, 89, 60, 91syl21anc 837 . . . . . 6 (𝜑𝐶:(0..^(♯‘𝐶))–1-1-onto→(0..^(♯‘𝐶)))
9381, 82, 92ccatws1f1o 32918 . . . . 5 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)))
9488s1eqd 14649 . . . . . . 7 (𝜑 → ⟨“(♯‘𝐶)”⟩ = ⟨“(♯‘𝐹)”⟩)
9594oveq2d 7464 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐶)”⟩) = (𝐶 ++ ⟨“(♯‘𝐹)”⟩))
9688oveq1d 7463 . . . . . . . 8 (𝜑 → ((♯‘𝐶) + 1) = ((♯‘𝐹) + 1))
9796, 78eqtrd 2780 . . . . . . 7 (𝜑 → ((♯‘𝐶) + 1) = (♯‘𝐻))
9897oveq2d 7464 . . . . . 6 (𝜑 → (0..^((♯‘𝐶) + 1)) = (0..^(♯‘𝐻)))
9995, 98, 98f1oeq123d 6856 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐶)”⟩):(0..^((♯‘𝐶) + 1))–1-1-onto→(0..^((♯‘𝐶) + 1)) ↔ (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
10093, 99mpbid 232 . . . 4 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
101 f1ocnv 6874 . . . . 5 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
1026, 101syl 17 . . . 4 (𝜑𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
103 f1oco 6885 . . . 4 (((𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
104100, 102, 103syl2anc 583 . . 3 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)))
105 f1oeq23 6853 . . . 4 (((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ↔ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))))
106105biimpar 477 . . 3 ((((0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻)) ∧ (0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) = (0..^(♯‘𝐻))) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻))) → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
10780, 80, 104, 106syl21anc 837 . 2 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))))
108 f1ofo 6869 . . . 4 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
1096, 108syl 17 . . 3 (𝜑𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)))
11012ffnd 6748 . . 3 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
111 iswrdi 14566 . . . . . . . . . . 11 (𝐷:(0..^(♯‘𝐹))⟶𝑈𝐷 ∈ Word 𝑈)
11257, 111syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ Word 𝑈)
113 ccatws1len 14668 . . . . . . . . . 10 (𝐷 ∈ Word 𝑈 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
114112, 113syl 17 . . . . . . . . 9 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = ((♯‘𝐷) + 1))
115 elmapfn 8923 . . . . . . . . . . . 12 (𝐷 ∈ (𝑈m (0..^(♯‘𝐹))) → 𝐷 Fn (0..^(♯‘𝐹)))
116 hashfn 14424 . . . . . . . . . . . 12 (𝐷 Fn (0..^(♯‘𝐹)) → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
11755, 115, 1163syl 18 . . . . . . . . . . 11 (𝜑 → (♯‘𝐷) = (♯‘(0..^(♯‘𝐹))))
118117, 87eqtrd 2780 . . . . . . . . . 10 (𝜑 → (♯‘𝐷) = (♯‘𝐹))
119118oveq1d 7463 . . . . . . . . 9 (𝜑 → ((♯‘𝐷) + 1) = ((♯‘𝐹) + 1))
120114, 119, 783eqtrd 2784 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘𝐻))
121120oveq2d 7464 . . . . . . 7 (𝜑 → (0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩))) = (0..^(♯‘𝐻)))
122 eqidd 2741 . . . . . . . 8 (𝜑 → (♯‘(𝐷 ++ ⟨“𝑇”⟩)) = (♯‘(𝐷 ++ ⟨“𝑇”⟩)))
123 1arithidomlem.7 . . . . . . . . 9 (𝜑𝑇𝑈)
124 ccatws1cl 14664 . . . . . . . . 9 ((𝐷 ∈ Word 𝑈𝑇𝑈) → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
125112, 123, 124syl2anc 583 . . . . . . . 8 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) ∈ Word 𝑈)
126122, 125wrdfd 32900 . . . . . . 7 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘(𝐷 ++ ⟨“𝑇”⟩)))⟶𝑈)
127121, 126feq2dd 32642 . . . . . 6 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩):(0..^(♯‘𝐻))⟶𝑈)
128127ffnd 6748 . . . . 5 (𝜑 → (𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)))
129 f1of 6862 . . . . . 6 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
1306, 101, 1293syl 18 . . . . 5 (𝜑𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
131 fnfco 6786 . . . . 5 (((𝐷 ++ ⟨“𝑇”⟩) Fn (0..^(♯‘𝐻)) ∧ 𝑆:(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
132128, 130, 131syl2anc 583 . . . 4 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) Fn (0..^(♯‘𝐻)))
13378oveq2d 7464 . . . . . . 7 (𝜑 → (0..^((♯‘𝐹) + 1)) = (0..^(♯‘𝐻)))
1343eqcomd 2746 . . . . . . . 8 (𝜑 → ((♯‘𝐹) + 1) = (♯‘(𝐹 ++ ⟨“𝑄”⟩)))
135 1arithidomlem.1 . . . . . . . . 9 (𝜑𝑄𝑃)
136 ccatws1cl 14664 . . . . . . . . 9 ((𝐹 ∈ Word 𝑃𝑄𝑃) → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
1371, 135, 136syl2anc 583 . . . . . . . 8 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) ∈ Word 𝑃)
138134, 137wrdfd 32900 . . . . . . 7 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^((♯‘𝐹) + 1))⟶𝑃)
139133, 138feq2dd 32642 . . . . . 6 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩):(0..^(♯‘𝐻))⟶𝑃)
140139ffnd 6748 . . . . 5 (𝜑 → (𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)))
141 fzossfzop1 13794 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
14270, 141syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
143 sswrd 14570 . . . . . . . . . . 11 ((0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)) → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
144142, 143syl 17 . . . . . . . . . 10 (𝜑 → Word (0..^(♯‘𝐹)) ⊆ Word (0..^((♯‘𝐹) + 1)))
145 iswrdi 14566 . . . . . . . . . . 11 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐹)) → 𝐶 ∈ Word (0..^(♯‘𝐹)))
14662, 145syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Word (0..^(♯‘𝐹)))
147144, 146sseldd 4009 . . . . . . . . 9 (𝜑𝐶 ∈ Word (0..^((♯‘𝐹) + 1)))
148 ccatws1len 14668 . . . . . . . . 9 (𝐶 ∈ Word (0..^((♯‘𝐹) + 1)) → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
149147, 148syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((♯‘𝐶) + 1))
150149, 96, 783eqtrrd 2785 . . . . . . 7 (𝜑 → (♯‘𝐻) = (♯‘(𝐶 ++ ⟨“(♯‘𝐹)”⟩)))
151142, 133sseqtrd 4049 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐻)))
15262, 151fssd 6764 . . . . . . . . 9 (𝜑𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)))
153 iswrdi 14566 . . . . . . . . 9 (𝐶:(0..^(♯‘𝐹))⟶(0..^(♯‘𝐻)) → 𝐶 ∈ Word (0..^(♯‘𝐻)))
154152, 153syl 17 . . . . . . . 8 (𝜑𝐶 ∈ Word (0..^(♯‘𝐻)))
155 fzonn0p1 13793 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
15670, 155syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ (0..^((♯‘𝐹) + 1)))
157156, 133eleqtrd 2846 . . . . . . . 8 (𝜑 → (♯‘𝐹) ∈ (0..^(♯‘𝐻)))
158 ccatws1cl 14664 . . . . . . . 8 ((𝐶 ∈ Word (0..^(♯‘𝐻)) ∧ (♯‘𝐹) ∈ (0..^(♯‘𝐻))) → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
159154, 157, 158syl2anc 583 . . . . . . 7 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∈ Word (0..^(♯‘𝐻)))
160150, 159wrdfd 32900 . . . . . 6 (𝜑 → (𝐶 ++ ⟨“(♯‘𝐹)”⟩):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
161160, 130fcod 6773 . . . . 5 (𝜑 → ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻)))
162 fnfco 6786 . . . . 5 (((𝐹 ++ ⟨“𝑄”⟩) Fn (0..^(♯‘𝐻)) ∧ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘𝐻))⟶(0..^(♯‘𝐻))) → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
163140, 161, 162syl2anc 583 . . . 4 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)) Fn (0..^(♯‘𝐻)))
164 ovexd 7483 . . . 4 (𝜑 → (0..^(♯‘𝐻)) ∈ V)
165 inidm 4248 . . . 4 ((0..^(♯‘𝐻)) ∩ (0..^(♯‘𝐻))) = (0..^(♯‘𝐻))
166132, 163, 164, 164, 165offn 7727 . . 3 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻)))
167 1arithidomlem.10 . . . 4 (𝜑 → (𝐻𝑆) = (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩))
168 eqid 2740 . . . . . . . . 9 (♯‘𝐹) = (♯‘𝐹)
169168, 1, 135, 60ccatws1f1olast 32919 . . . . . . . 8 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) = ((𝐹𝐶) ++ ⟨“𝑄”⟩))
170169oveq2d 7464 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)))
171123s1cld 14651 . . . . . . . 8 (𝜑 → ⟨“𝑇”⟩ ∈ Word 𝑈)
172 iswrdi 14566 . . . . . . . . 9 ((𝐹𝐶):(0..^(♯‘𝐹))⟶𝑃 → (𝐹𝐶) ∈ Word 𝑃)
17363, 172syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐶) ∈ Word 𝑃)
174135s1cld 14651 . . . . . . . 8 (𝜑 → ⟨“𝑄”⟩ ∈ Word 𝑃)
175 lenco 14881 . . . . . . . . . 10 ((𝐶 ∈ Word (0..^(♯‘𝐹)) ∧ 𝐹:(0..^(♯‘𝐹))⟶𝑃) → (♯‘(𝐹𝐶)) = (♯‘𝐶))
176146, 59, 175syl2anc 583 . . . . . . . . 9 (𝜑 → (♯‘(𝐹𝐶)) = (♯‘𝐶))
17785, 176, 1173eqtr4rd 2791 . . . . . . . 8 (𝜑 → (♯‘𝐷) = (♯‘(𝐹𝐶)))
178 s1len 14654 . . . . . . . . . 10 (♯‘⟨“𝑇”⟩) = 1
179 s1len 14654 . . . . . . . . . 10 (♯‘⟨“𝑄”⟩) = 1
180178, 179eqtr4i 2771 . . . . . . . . 9 (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩)
181180a1i 11 . . . . . . . 8 (𝜑 → (♯‘⟨“𝑇”⟩) = (♯‘⟨“𝑄”⟩))
182112, 171, 173, 174, 177, 181ofccat 15018 . . . . . . 7 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹𝐶) ++ ⟨“𝑄”⟩)) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
183170, 182eqtrd 2780 . . . . . 6 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
184139, 160fcod 6773 . . . . . . . . . . 11 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)):(0..^(♯‘𝐻))⟶𝑃)
185184ffnd 6748 . . . . . . . . . 10 (𝜑 → ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) Fn (0..^(♯‘𝐻)))
186128, 185, 130, 164, 164, 164, 165ofco 7738 . . . . . . . . 9 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)))
187186coeq1d 5886 . . . . . . . 8 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
188 coass 6296 . . . . . . . 8 ((((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ 𝑆) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆))
189187, 188eqtr3di 2795 . . . . . . 7 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)))
190 f1of1 6861 . . . . . . . . . 10 (𝑆:(0..^(♯‘𝐻))–1-1-onto→(0..^(♯‘𝐻)) → 𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
1916, 190syl 17 . . . . . . . . 9 (𝜑𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)))
192 f1cocnv1 6892 . . . . . . . . 9 (𝑆:(0..^(♯‘𝐻))–1-1→(0..^(♯‘𝐻)) → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
193191, 192syl 17 . . . . . . . 8 (𝜑 → (𝑆𝑆) = ( I ↾ (0..^(♯‘𝐻))))
194193coeq2d 5887 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ (𝑆𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))))
19554, 127, 184, 164, 164, 165off 7732 . . . . . . . 8 (𝜑 → ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅))
196 fcoi1 6795 . . . . . . . 8 (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))):(0..^(♯‘𝐻))⟶(Base‘𝑅) → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
197195, 196syl 17 . . . . . . 7 (𝜑 → (((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))) ∘ ( I ↾ (0..^(♯‘𝐻)))) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
198189, 194, 1973eqtrd 2784 . . . . . 6 (𝜑 → ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((𝐷 ++ ⟨“𝑇”⟩) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩))))
199 ofs1 15019 . . . . . . . . 9 ((𝑇𝑈𝑄𝑃) → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
200123, 135, 199syl2anc 583 . . . . . . . 8 (𝜑 → (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩) = ⟨“(𝑇 · 𝑄)”⟩)
201 1arithidomlem.8 . . . . . . . . 9 (𝜑 → (𝑇 · 𝑄) = (𝐻𝐾))
202201s1eqd 14649 . . . . . . . 8 (𝜑 → ⟨“(𝑇 · 𝑄)”⟩ = ⟨“(𝐻𝐾)”⟩)
203200, 202eqtr2d 2781 . . . . . . 7 (𝜑 → ⟨“(𝐻𝐾)”⟩ = (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩))
2044, 203oveq12d 7466 . . . . . 6 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((𝐷f · (𝐹𝐶)) ++ (⟨“𝑇”⟩ ∘f · ⟨“𝑄”⟩)))
205183, 198, 2043eqtr4rd 2791 . . . . 5 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆))
206 coass 6296 . . . . . . 7 (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆) = ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))
207206oveq2i 7459 . . . . . 6 (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))
208207coeq1i 5884 . . . . 5 ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · (((𝐹 ++ ⟨“𝑄”⟩) ∘ (𝐶 ++ ⟨“(♯‘𝐹)”⟩)) ∘ 𝑆)) ∘ 𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)
209205, 208eqtrdi 2796 . . . 4 (𝜑 → (((𝐻𝑆) prefix ((♯‘𝐻) − 1)) ++ ⟨“(𝐻𝐾)”⟩) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
210167, 209eqtrd 2780 . . 3 (𝜑 → (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆))
211 cocan2 7328 . . . 4 ((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) → ((𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆) ↔ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
212211biimpa 476 . . 3 (((𝑆:(0..^(♯‘𝐻))–onto→(0..^(♯‘𝐻)) ∧ 𝐻 Fn (0..^(♯‘𝐻)) ∧ (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) Fn (0..^(♯‘𝐻))) ∧ (𝐻𝑆) = ((((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))) ∘ 𝑆)) → 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
213109, 110, 166, 210, 212syl31anc 1373 . 2 (𝜑𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆))))
214107, 213jca 511 1 (𝜑 → (((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆):(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩)))–1-1-onto→(0..^(♯‘(𝐹 ++ ⟨“𝑄”⟩))) ∧ 𝐻 = (((𝐷 ++ ⟨“𝑇”⟩) ∘ 𝑆) ∘f · ((𝐹 ++ ⟨“𝑄”⟩) ∘ ((𝐶 ++ ⟨“(♯‘𝐹)”⟩) ∘ 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166   I cid 5592  ccnv 5699  dom cdm 5700  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643   prefix cpfx 14718  Basecbs 17258  .rcmulr 17312   Σg cgsu 17500  mulGrpcmgp 20161  Ringcrg 20260  rcdsr 20380  Unitcui 20381  RPrimecrpm 20458  IDomncidom 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mgp 20162  df-ring 20262  df-cring 20263  df-dvdsr 20383  df-unit 20384  df-rprm 20459  df-idom 20718
This theorem is referenced by:  1arithidom  33530
  Copyright terms: Public domain W3C validator