Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag Structured version   Visualization version   GIF version

Theorem oppfdiag 49378
Description: A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism (fucoppc 49372). (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag.f (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag.n 𝑁 = (𝐷 Nat 𝐶)
oppfdiag.g (𝜑𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
Assertion
Ref Expression
oppfdiag (𝜑 → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) = (𝑂Δfunc𝑃))
Distinct variable groups:   𝐶,𝑚,𝑛   𝐷,𝑚,𝑛   𝑚,𝐿,𝑛   𝑚,𝑁,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝑃(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝑂(𝑚,𝑛)

Proof of Theorem oppfdiag
Dummy variables 𝑓 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag.o . . . . . . 7 𝑂 = (oppCat‘𝐶)
2 eqid 2729 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17655 . . . . . 6 (Base‘𝐶) = (Base‘𝑂)
4 eqid 2729 . . . . . . 7 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
54fucbas 17901 . . . . . 6 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
6 eqid 2729 . . . . . . . . 9 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
7 oppfdiag.l . . . . . . . . . 10 𝐿 = (𝐶Δfunc𝐷)
8 oppfdiag.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
9 oppfdiag.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
10 eqid 2729 . . . . . . . . . 10 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
117, 8, 9, 10diagcl 18178 . . . . . . . . 9 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
121, 6, 11oppfoppc2 49104 . . . . . . . 8 (𝜑 → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
13 oppfdiag.p . . . . . . . . . 10 𝑃 = (oppCat‘𝐷)
14 oppfdiag.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐶)
15 oppfdiag.f . . . . . . . . . 10 (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
16 oppfdiag.g . . . . . . . . . 10 (𝜑𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
1713, 1, 10, 6, 4, 14, 15, 16, 9, 8fucoppcfunc 49374 . . . . . . . . 9 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺)
18 df-br 5103 . . . . . . . . 9 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
1917, 18sylib 218 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2012, 19cofucl 17826 . . . . . . 7 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
2120func1st2nd 49038 . . . . . 6 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))))
223, 5, 21funcf1 17804 . . . . 5 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))):(Base‘𝐶)⟶(𝑃 Func 𝑂))
2322ffnd 6671 . . . 4 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))) Fn (Base‘𝐶))
24 eqid 2729 . . . . . . . 8 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
251oppccat 17659 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
268, 25syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
2713oppccat 17659 . . . . . . . . 9 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
289, 27syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Cat)
2924, 26, 28, 4diagcl 18178 . . . . . . 7 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3029func1st2nd 49038 . . . . . 6 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
313, 5, 30funcf1 17804 . . . . 5 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):(Base‘𝐶)⟶(𝑃 Func 𝑂))
3231ffnd 6671 . . . 4 (𝜑 → (1st ‘(𝑂Δfunc𝑃)) Fn (Base‘𝐶))
3312adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
3419adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
35 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
363, 33, 34, 35cofu1 17822 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑥) = ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑥)))
3717func1st 49039 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
3811oppf1 49101 . . . . . . . 8 (𝜑 → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
3938fveq1d 6842 . . . . . . 7 (𝜑 → ((1st ‘( oppFunc ‘𝐿))‘𝑥) = ((1st𝐿)‘𝑥))
4037, 39fveq12d 6847 . . . . . 6 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑥)) = (𝐹‘((1st𝐿)‘𝑥)))
4140adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑥)) = (𝐹‘((1st𝐿)‘𝑥)))
428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
439adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
4415adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
451, 13, 7, 42, 43, 44, 2, 35oppfdiag1 49376 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹‘((1st𝐿)‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
4636, 41, 453eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑥) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
4723, 32, 46eqfnfvd 6988 . . 3 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))) = (1st ‘(𝑂Δfunc𝑃)))
483, 21funcfn2 17807 . . . 4 (𝜑 → (2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))) Fn ((Base‘𝐶) × (Base‘𝐶)))
493, 30funcfn2 17807 . . . 4 (𝜑 → (2nd ‘(𝑂Δfunc𝑃)) Fn ((Base‘𝐶) × (Base‘𝐶)))
50 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
5150, 1oppchom 17652 . . . . . . . 8 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5251a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥))
53 eqid 2729 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
54 eqid 2729 . . . . . . . . 9 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
554, 54fuchom 17902 . . . . . . . 8 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
5621adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))))
57 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
58 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
593, 53, 55, 56, 57, 58funcf2 17806 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑦)))
6052, 59feq2dd 6656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))‘𝑦)))
6160ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥))
6230adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
633, 53, 55, 62, 57, 58funcf2 17806 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦)))
6452, 63feq2dd 6656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦)))
6564ffnd 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥))
6612ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
6719ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
6857adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
6958adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
70 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
7170, 51eleqtrrdi 2839 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
723, 66, 67, 68, 69, 53, 71cofu2 17824 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦)‘𝑓) = ((((1st ‘( oppFunc ‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘( oppFunc ‘𝐿))‘𝑦))‘((𝑥(2nd ‘( oppFunc ‘𝐿))𝑦)‘𝑓)))
7317func2nd 49040 . . . . . . . . . 10 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
7438fveq1d 6842 . . . . . . . . . 10 (𝜑 → ((1st ‘( oppFunc ‘𝐿))‘𝑦) = ((1st𝐿)‘𝑦))
7573, 39, 74oveq123d 7390 . . . . . . . . 9 (𝜑 → (((1st ‘( oppFunc ‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘( oppFunc ‘𝐿))‘𝑦)) = (((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦)))
7611oppf2 49102 . . . . . . . . . 10 (𝜑 → (𝑥(2nd ‘( oppFunc ‘𝐿))𝑦) = (𝑦(2nd𝐿)𝑥))
7776fveq1d 6842 . . . . . . . . 9 (𝜑 → ((𝑥(2nd ‘( oppFunc ‘𝐿))𝑦)‘𝑓) = ((𝑦(2nd𝐿)𝑥)‘𝑓))
7875, 77fveq12d 6847 . . . . . . . 8 (𝜑 → ((((1st ‘( oppFunc ‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘( oppFunc ‘𝐿))‘𝑦))‘((𝑥(2nd ‘( oppFunc ‘𝐿))𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)))
7978ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st ‘( oppFunc ‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘( oppFunc ‘𝐿))‘𝑦))‘((𝑥(2nd ‘( oppFunc ‘𝐿))𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)))
8016ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
818ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat)
829ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐷 ∈ Cat)
83 eqid 2729 . . . . . . . . 9 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
847, 81, 82, 2, 68, 83diag1cl 18179 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st𝐿)‘𝑥) ∈ (𝐷 Func 𝐶))
85 eqid 2729 . . . . . . . . 9 ((1st𝐿)‘𝑦) = ((1st𝐿)‘𝑦)
867, 81, 82, 2, 69, 85diag1cl 18179 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st𝐿)‘𝑦) ∈ (𝐷 Func 𝐶))
87 eqid 2729 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
887, 2, 87, 50, 81, 82, 69, 68, 70diag2 18182 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑦(2nd𝐿)𝑥)‘𝑓) = ((Base‘𝐷) × {𝑓}))
897, 2, 87, 50, 81, 82, 69, 68, 70, 14diag2cl 18183 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st𝐿)‘𝑦)𝑁((1st𝐿)‘𝑥)))
9080, 84, 86, 88, 89opf2 49368 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)) = ((Base‘𝐷) × {𝑓}))
9172, 79, 903eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
9213, 87oppcbas 17655 . . . . . . 7 (Base‘𝐷) = (Base‘𝑃)
9381, 25syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑂 ∈ Cat)
9482, 27syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑃 ∈ Cat)
9524, 3, 92, 53, 93, 94, 68, 69, 71diag2 18182 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
9691, 95eqtr4d 2767 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦)‘𝑓) = ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓))
9761, 65, 96eqfnfvd 6988 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))𝑦) = (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦))
9848, 49, 97eqfnovd 48827 . . 3 (𝜑 → (2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))) = (2nd ‘(𝑂Δfunc𝑃)))
9947, 98opeq12d 4841 . 2 (𝜑 → ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))⟩ = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
100 relfunc 17800 . . 3 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
101 1st2nd 7997 . . 3 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) = ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))⟩)
102100, 20, 101sylancr 587 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) = ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)))⟩)
103 1st2nd 7997 . . 3 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
104100, 29, 103sylancr 587 . 2 (𝜑 → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
10599, 102, 1043eqtr4d 2774 1 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) = (𝑂Δfunc𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4585  cop 4591   class class class wbr 5102   I cid 5525   × cxp 5629  cres 5633  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17601  oppCatcoppc 17648   Func cfunc 17792  func ccofu 17794   Nat cnat 17882   FuncCat cfuc 17883  Δfunccdiag 18149   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-oppc 17649  df-sect 17685  df-inv 17686  df-iso 17687  df-func 17796  df-idfu 17797  df-cofu 17798  df-full 17844  df-fth 17845  df-nat 17884  df-fuc 17885  df-catc 18037  df-xpc 18109  df-1stf 18110  df-curf 18151  df-diag 18153  df-oppf 49085
This theorem is referenced by:  lmddu  49629
  Copyright terms: Public domain W3C validator