Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag Structured version   Visualization version   GIF version

Theorem oppfdiag 49385
Description: A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism (fucoppc 49379). (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag.f (𝜑𝐹 = (oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag.n 𝑁 = (𝐷 Nat 𝐶)
oppfdiag.g (𝜑𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
Assertion
Ref Expression
oppfdiag (𝜑 → (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) = (𝑂Δfunc𝑃))
Distinct variable groups:   𝐶,𝑚,𝑛   𝐷,𝑚,𝑛   𝑚,𝐿,𝑛   𝑚,𝑁,𝑛   𝜑,𝑚,𝑛
Allowed substitution hints:   𝑃(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝑂(𝑚,𝑛)

Proof of Theorem oppfdiag
Dummy variables 𝑓 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag.o . . . . . . 7 𝑂 = (oppCat‘𝐶)
2 eqid 2730 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17685 . . . . . 6 (Base‘𝐶) = (Base‘𝑂)
4 eqid 2730 . . . . . . 7 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
54fucbas 17931 . . . . . 6 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
6 eqid 2730 . . . . . . . . 9 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
7 oppfdiag.l . . . . . . . . . 10 𝐿 = (𝐶Δfunc𝐷)
8 oppfdiag.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
9 oppfdiag.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
10 eqid 2730 . . . . . . . . . 10 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
117, 8, 9, 10diagcl 18208 . . . . . . . . 9 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
121, 6, 11oppfoppc2 49119 . . . . . . . 8 (𝜑 → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
13 oppfdiag.p . . . . . . . . . 10 𝑃 = (oppCat‘𝐷)
14 oppfdiag.n . . . . . . . . . 10 𝑁 = (𝐷 Nat 𝐶)
15 oppfdiag.f . . . . . . . . . 10 (𝜑𝐹 = (oppFunc ↾ (𝐷 Func 𝐶)))
16 oppfdiag.g . . . . . . . . . 10 (𝜑𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
1713, 1, 10, 6, 4, 14, 15, 16, 9, 8fucoppcfunc 49381 . . . . . . . . 9 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺)
18 df-br 5110 . . . . . . . . 9 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
1917, 18sylib 218 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2012, 19cofucl 17856 . . . . . . 7 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
2120func1st2nd 49053 . . . . . 6 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))))
223, 5, 21funcf1 17834 . . . . 5 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))):(Base‘𝐶)⟶(𝑃 Func 𝑂))
2322ffnd 6691 . . . 4 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))) Fn (Base‘𝐶))
24 eqid 2730 . . . . . . . 8 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
251oppccat 17689 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
268, 25syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
2713oppccat 17689 . . . . . . . . 9 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
289, 27syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Cat)
2924, 26, 28, 4diagcl 18208 . . . . . . 7 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3029func1st2nd 49053 . . . . . 6 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
313, 5, 30funcf1 17834 . . . . 5 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):(Base‘𝐶)⟶(𝑃 Func 𝑂))
3231ffnd 6691 . . . 4 (𝜑 → (1st ‘(𝑂Δfunc𝑃)) Fn (Base‘𝐶))
3312adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
3419adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
35 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
363, 33, 34, 35cofu1 17852 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑥) = ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘(oppFunc‘𝐿))‘𝑥)))
3717func1st 49054 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
3811oppf1 49116 . . . . . . . 8 (𝜑 → (1st ‘(oppFunc‘𝐿)) = (1st𝐿))
3938fveq1d 6862 . . . . . . 7 (𝜑 → ((1st ‘(oppFunc‘𝐿))‘𝑥) = ((1st𝐿)‘𝑥))
4037, 39fveq12d 6867 . . . . . 6 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘(oppFunc‘𝐿))‘𝑥)) = (𝐹‘((1st𝐿)‘𝑥)))
4140adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘⟨𝐹, 𝐺⟩)‘((1st ‘(oppFunc‘𝐿))‘𝑥)) = (𝐹‘((1st𝐿)‘𝑥)))
428adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
439adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
4415adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹 = (oppFunc ↾ (𝐷 Func 𝐶)))
451, 13, 7, 42, 43, 44, 2, 35oppfdiag1 49383 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹‘((1st𝐿)‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
4636, 41, 453eqtrd 2769 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑥) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥))
4723, 32, 46eqfnfvd 7008 . . 3 (𝜑 → (1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))) = (1st ‘(𝑂Δfunc𝑃)))
483, 21funcfn2 17837 . . . 4 (𝜑 → (2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))) Fn ((Base‘𝐶) × (Base‘𝐶)))
493, 30funcfn2 17837 . . . 4 (𝜑 → (2nd ‘(𝑂Δfunc𝑃)) Fn ((Base‘𝐶) × (Base‘𝐶)))
50 eqid 2730 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
5150, 1oppchom 17682 . . . . . . . 8 (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)
5251a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥))
53 eqid 2730 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
54 eqid 2730 . . . . . . . . 9 (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂)
554, 54fuchom 17932 . . . . . . . 8 (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂))
5621adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))))
57 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
58 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
593, 53, 55, 56, 57, 58funcf2 17836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑦)))
6052, 59feq2dd 6676 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))‘𝑦)))
6160ffnd 6691 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥))
6230adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
633, 53, 55, 62, 57, 58funcf2 17836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦)))
6452, 63feq2dd 6676 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦)))
6564ffnd 6691 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥))
6612ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
6719ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ⟨𝐹, 𝐺⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
6857adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
6958adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
70 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
7170, 51eleqtrrdi 2840 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦))
723, 66, 67, 68, 69, 53, 71cofu2 17854 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦)‘𝑓) = ((((1st ‘(oppFunc‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓)))
7317func2nd 49055 . . . . . . . . . 10 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
7438fveq1d 6862 . . . . . . . . . 10 (𝜑 → ((1st ‘(oppFunc‘𝐿))‘𝑦) = ((1st𝐿)‘𝑦))
7573, 39, 74oveq123d 7410 . . . . . . . . 9 (𝜑 → (((1st ‘(oppFunc‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘(oppFunc‘𝐿))‘𝑦)) = (((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦)))
7611oppf2 49117 . . . . . . . . . 10 (𝜑 → (𝑥(2nd ‘(oppFunc‘𝐿))𝑦) = (𝑦(2nd𝐿)𝑥))
7776fveq1d 6862 . . . . . . . . 9 (𝜑 → ((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓) = ((𝑦(2nd𝐿)𝑥)‘𝑓))
7875, 77fveq12d 6867 . . . . . . . 8 (𝜑 → ((((1st ‘(oppFunc‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)))
7978ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st ‘(oppFunc‘𝐿))‘𝑥)(2nd ‘⟨𝐹, 𝐺⟩)((1st ‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓)) = ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)))
8016ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))
818ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat)
829ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐷 ∈ Cat)
83 eqid 2730 . . . . . . . . 9 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
847, 81, 82, 2, 68, 83diag1cl 18209 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st𝐿)‘𝑥) ∈ (𝐷 Func 𝐶))
85 eqid 2730 . . . . . . . . 9 ((1st𝐿)‘𝑦) = ((1st𝐿)‘𝑦)
867, 81, 82, 2, 69, 85diag1cl 18209 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st𝐿)‘𝑦) ∈ (𝐷 Func 𝐶))
87 eqid 2730 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
887, 2, 87, 50, 81, 82, 69, 68, 70diag2 18212 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑦(2nd𝐿)𝑥)‘𝑓) = ((Base‘𝐷) × {𝑓}))
897, 2, 87, 50, 81, 82, 69, 68, 70, 14diag2cl 18213 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st𝐿)‘𝑦)𝑁((1st𝐿)‘𝑥)))
9080, 84, 86, 88, 89opf2 49375 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st𝐿)‘𝑥)𝐺((1st𝐿)‘𝑦))‘((𝑦(2nd𝐿)𝑥)‘𝑓)) = ((Base‘𝐷) × {𝑓}))
9172, 79, 903eqtrd 2769 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
9213, 87oppcbas 17685 . . . . . . 7 (Base‘𝐷) = (Base‘𝑃)
9381, 25syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑂 ∈ Cat)
9482, 27syl 17 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑃 ∈ Cat)
9524, 3, 92, 53, 93, 94, 68, 69, 71diag2 18212 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓}))
9691, 95eqtr4d 2768 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦)‘𝑓) = ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓))
9761, 65, 96eqfnfvd 7008 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))𝑦) = (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦))
9848, 49, 97eqfnovd 48842 . . 3 (𝜑 → (2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))) = (2nd ‘(𝑂Δfunc𝑃)))
9947, 98opeq12d 4847 . 2 (𝜑 → ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))⟩ = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
100 relfunc 17830 . . 3 Rel (𝑂 Func (𝑃 FuncCat 𝑂))
101 1st2nd 8020 . . 3 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) = ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))⟩)
102100, 20, 101sylancr 587 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) = ⟨(1st ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿))), (2nd ‘(⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)))⟩)
103 1st2nd 8020 . . 3 ((Rel (𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
104100, 29, 103sylancr 587 . 2 (𝜑 → (𝑂Δfunc𝑃) = ⟨(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))⟩)
10599, 102, 1043eqtr4d 2775 1 (𝜑 → (⟨𝐹, 𝐺⟩ ∘func (oppFunc‘𝐿)) = (𝑂Δfunc𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4591  cop 4597   class class class wbr 5109   I cid 5534   × cxp 5638  cres 5642  Rel wrel 5645  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  Catccat 17631  oppCatcoppc 17678   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   FuncCat cfuc 17913  Δfunccdiag 18179  oppFunccoppf 49099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-oppc 17679  df-sect 17715  df-inv 17716  df-iso 17717  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-nat 17914  df-fuc 17915  df-catc 18067  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183  df-oppf 49100
This theorem is referenced by:  lmddu  49635
  Copyright terms: Public domain W3C validator