| Step | Hyp | Ref
| Expression |
| 1 | | oppfdiag.o |
. . . . . . 7
⊢ 𝑂 = (oppCat‘𝐶) |
| 2 | | eqid 2730 |
. . . . . . 7
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | 1, 2 | oppcbas 17685 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝑂) |
| 4 | | eqid 2730 |
. . . . . . 7
⊢ (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂) |
| 5 | 4 | fucbas 17931 |
. . . . . 6
⊢ (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂)) |
| 6 | | eqid 2730 |
. . . . . . . . 9
⊢
(oppCat‘(𝐷
FuncCat 𝐶)) =
(oppCat‘(𝐷 FuncCat
𝐶)) |
| 7 | | oppfdiag.l |
. . . . . . . . . 10
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 8 | | oppfdiag.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 9 | | oppfdiag.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 10 | | eqid 2730 |
. . . . . . . . . 10
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 11 | 7, 8, 9, 10 | diagcl 18208 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 12 | 1, 6, 11 | oppfoppc2 49119 |
. . . . . . . 8
⊢ (𝜑 → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 13 | | oppfdiag.p |
. . . . . . . . . 10
⊢ 𝑃 = (oppCat‘𝐷) |
| 14 | | oppfdiag.n |
. . . . . . . . . 10
⊢ 𝑁 = (𝐷 Nat 𝐶) |
| 15 | | oppfdiag.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐷 Func 𝐶))) |
| 16 | | oppfdiag.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚)))) |
| 17 | 13, 1, 10, 6, 4, 14, 15, 16, 9, 8 | fucoppcfunc 49381 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺) |
| 18 | | df-br 5110 |
. . . . . . . . 9
⊢ (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))𝐺 ↔ 〈𝐹, 𝐺〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 19 | 17, 18 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 20 | 12, 19 | cofucl 17856 |
. . . . . . 7
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)) ∈
(𝑂 Func (𝑃 FuncCat 𝑂))) |
| 21 | 20 | func1st2nd 49053 |
. . . . . 6
⊢ (𝜑 → (1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))) |
| 22 | 3, 5, 21 | funcf1 17834 |
. . . . 5
⊢ (𝜑 → (1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))):(Base‘𝐶)⟶(𝑃 Func 𝑂)) |
| 23 | 22 | ffnd 6691 |
. . . 4
⊢ (𝜑 → (1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))) Fn (Base‘𝐶)) |
| 24 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃) |
| 25 | 1 | oppccat 17689 |
. . . . . . . . 9
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 26 | 8, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ Cat) |
| 27 | 13 | oppccat 17689 |
. . . . . . . . 9
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 28 | 9, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Cat) |
| 29 | 24, 26, 28, 4 | diagcl 18208 |
. . . . . . 7
⊢ (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) |
| 30 | 29 | func1st2nd 49053 |
. . . . . 6
⊢ (𝜑 → (1st
‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃))) |
| 31 | 3, 5, 30 | funcf1 17834 |
. . . . 5
⊢ (𝜑 → (1st
‘(𝑂Δfunc𝑃)):(Base‘𝐶)⟶(𝑃 Func 𝑂)) |
| 32 | 31 | ffnd 6691 |
. . . 4
⊢ (𝜑 → (1st
‘(𝑂Δfunc𝑃)) Fn (Base‘𝐶)) |
| 33 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 34 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈𝐹, 𝐺〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 35 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 36 | 3, 33, 34, 35 | cofu1 17852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))‘𝑥) = ((1st ‘〈𝐹, 𝐺〉)‘((1st
‘(oppFunc‘𝐿))‘𝑥))) |
| 37 | 17 | func1st 49054 |
. . . . . . 7
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
| 38 | 11 | oppf1 49116 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(oppFunc‘𝐿)) =
(1st ‘𝐿)) |
| 39 | 38 | fveq1d 6862 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘(oppFunc‘𝐿))‘𝑥) = ((1st ‘𝐿)‘𝑥)) |
| 40 | 37, 39 | fveq12d 6867 |
. . . . . 6
⊢ (𝜑 → ((1st
‘〈𝐹, 𝐺〉)‘((1st
‘(oppFunc‘𝐿))‘𝑥)) = (𝐹‘((1st ‘𝐿)‘𝑥))) |
| 41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘〈𝐹, 𝐺〉)‘((1st
‘(oppFunc‘𝐿))‘𝑥)) = (𝐹‘((1st ‘𝐿)‘𝑥))) |
| 42 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
| 43 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
| 44 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹 = (oppFunc ↾ (𝐷 Func 𝐶))) |
| 45 | 1, 13, 7, 42, 43, 44, 2, 35 | oppfdiag1 49383 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐹‘((1st ‘𝐿)‘𝑥)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥)) |
| 46 | 36, 41, 45 | 3eqtrd 2769 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))‘𝑥) = ((1st ‘(𝑂Δfunc𝑃))‘𝑥)) |
| 47 | 23, 32, 46 | eqfnfvd 7008 |
. . 3
⊢ (𝜑 → (1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))) = (1st ‘(𝑂Δfunc𝑃))) |
| 48 | 3, 21 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 49 | 3, 30 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝑂Δfunc𝑃)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 50 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 51 | 50, 1 | oppchom 17682 |
. . . . . . . 8
⊢ (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥) |
| 52 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝑂)𝑦) = (𝑦(Hom ‘𝐶)𝑥)) |
| 53 | | eqid 2730 |
. . . . . . . 8
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
| 54 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑃 Nat 𝑂) = (𝑃 Nat 𝑂) |
| 55 | 4, 54 | fuchom 17932 |
. . . . . . . 8
⊢ (𝑃 Nat 𝑂) = (Hom ‘(𝑃 FuncCat 𝑂)) |
| 56 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))) |
| 57 | | simprl 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
| 58 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
| 59 | 3, 53, 55, 56, 57, 58 | funcf2 17836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))‘𝑦))) |
| 60 | 52, 59 | feq2dd 6676 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿)))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))‘𝑦))) |
| 61 | 60 | ffnd 6691 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥)) |
| 62 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃))) |
| 63 | 3, 53, 55, 62, 57, 58 | funcf2 17836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑥(Hom ‘𝑂)𝑦)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦))) |
| 64 | 52, 63 | feq2dd 6676 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦):(𝑦(Hom ‘𝐶)𝑥)⟶(((1st ‘(𝑂Δfunc𝑃))‘𝑥)(𝑃 Nat 𝑂)((1st ‘(𝑂Δfunc𝑃))‘𝑦))) |
| 65 | 64 | ffnd 6691 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦) Fn (𝑦(Hom ‘𝐶)𝑥)) |
| 66 | 12 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 67 | 19 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 〈𝐹, 𝐺〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 68 | 57 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶)) |
| 69 | 58 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶)) |
| 70 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
| 71 | 70, 51 | eleqtrrdi 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑥(Hom ‘𝑂)𝑦)) |
| 72 | 3, 66, 67, 68, 69, 53, 71 | cofu2 17854 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦)‘𝑓) = ((((1st
‘(oppFunc‘𝐿))‘𝑥)(2nd ‘〈𝐹, 𝐺〉)((1st
‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓))) |
| 73 | 17 | func2nd 49055 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘〈𝐹, 𝐺〉) = 𝐺) |
| 74 | 38 | fveq1d 6862 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘(oppFunc‘𝐿))‘𝑦) = ((1st ‘𝐿)‘𝑦)) |
| 75 | 73, 39, 74 | oveq123d 7410 |
. . . . . . . . 9
⊢ (𝜑 → (((1st
‘(oppFunc‘𝐿))‘𝑥)(2nd ‘〈𝐹, 𝐺〉)((1st
‘(oppFunc‘𝐿))‘𝑦)) = (((1st ‘𝐿)‘𝑥)𝐺((1st ‘𝐿)‘𝑦))) |
| 76 | 11 | oppf2 49117 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥(2nd ‘(oppFunc‘𝐿))𝑦) = (𝑦(2nd ‘𝐿)𝑥)) |
| 77 | 76 | fveq1d 6862 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓) = ((𝑦(2nd ‘𝐿)𝑥)‘𝑓)) |
| 78 | 75, 77 | fveq12d 6867 |
. . . . . . . 8
⊢ (𝜑 → ((((1st
‘(oppFunc‘𝐿))‘𝑥)(2nd ‘〈𝐹, 𝐺〉)((1st
‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓)) = ((((1st ‘𝐿)‘𝑥)𝐺((1st ‘𝐿)‘𝑦))‘((𝑦(2nd ‘𝐿)𝑥)‘𝑓))) |
| 79 | 78 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st
‘(oppFunc‘𝐿))‘𝑥)(2nd ‘〈𝐹, 𝐺〉)((1st
‘(oppFunc‘𝐿))‘𝑦))‘((𝑥(2nd ‘(oppFunc‘𝐿))𝑦)‘𝑓)) = ((((1st ‘𝐿)‘𝑥)𝐺((1st ‘𝐿)‘𝑦))‘((𝑦(2nd ‘𝐿)𝑥)‘𝑓))) |
| 80 | 16 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚)))) |
| 81 | 8 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐶 ∈ Cat) |
| 82 | 9 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝐷 ∈ Cat) |
| 83 | | eqid 2730 |
. . . . . . . . 9
⊢
((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑥) |
| 84 | 7, 81, 82, 2, 68, 83 | diag1cl 18209 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st ‘𝐿)‘𝑥) ∈ (𝐷 Func 𝐶)) |
| 85 | | eqid 2730 |
. . . . . . . . 9
⊢
((1st ‘𝐿)‘𝑦) = ((1st ‘𝐿)‘𝑦) |
| 86 | 7, 81, 82, 2, 69, 85 | diag1cl 18209 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((1st ‘𝐿)‘𝑦) ∈ (𝐷 Func 𝐶)) |
| 87 | | eqid 2730 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 88 | 7, 2, 87, 50, 81, 82, 69, 68, 70 | diag2 18212 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑦(2nd ‘𝐿)𝑥)‘𝑓) = ((Base‘𝐷) × {𝑓})) |
| 89 | 7, 2, 87, 50, 81, 82, 69, 68, 70, 14 | diag2cl 18213 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((Base‘𝐷) × {𝑓}) ∈ (((1st ‘𝐿)‘𝑦)𝑁((1st ‘𝐿)‘𝑥))) |
| 90 | 80, 84, 86, 88, 89 | opf2 49375 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((((1st ‘𝐿)‘𝑥)𝐺((1st ‘𝐿)‘𝑦))‘((𝑦(2nd ‘𝐿)𝑥)‘𝑓)) = ((Base‘𝐷) × {𝑓})) |
| 91 | 72, 79, 90 | 3eqtrd 2769 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓})) |
| 92 | 13, 87 | oppcbas 17685 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝑃) |
| 93 | 81, 25 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑂 ∈ Cat) |
| 94 | 82, 27 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑃 ∈ Cat) |
| 95 | 24, 3, 92, 53, 93, 94, 68, 69, 71 | diag2 18212 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓) = ((Base‘𝐷) × {𝑓})) |
| 96 | 91, 95 | eqtr4d 2768 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦)‘𝑓) = ((𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)‘𝑓)) |
| 97 | 61, 65, 96 | eqfnfvd 7008 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))𝑦) = (𝑥(2nd ‘(𝑂Δfunc𝑃))𝑦)) |
| 98 | 48, 49, 97 | eqfnovd 48842 |
. . 3
⊢ (𝜑 → (2nd
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))) = (2nd ‘(𝑂Δfunc𝑃))) |
| 99 | 47, 98 | opeq12d 4847 |
. 2
⊢ (𝜑 → 〈(1st
‘(〈𝐹, 𝐺〉
∘func (oppFunc‘𝐿))), (2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))〉 =
〈(1st ‘(𝑂Δfunc𝑃)), (2nd ‘(𝑂Δfunc𝑃))〉) |
| 100 | | relfunc 17830 |
. . 3
⊢ Rel
(𝑂 Func (𝑃 FuncCat 𝑂)) |
| 101 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)) ∈
(𝑂 Func (𝑃 FuncCat 𝑂))) → (〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)) =
〈(1st ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿))),
(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))〉) |
| 102 | 100, 20, 101 | sylancr 587 |
. 2
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)) =
〈(1st ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿))),
(2nd ‘(〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)))〉) |
| 103 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝑂 Func (𝑃 FuncCat 𝑂)) ∧ (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) → (𝑂Δfunc𝑃) = 〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉) |
| 104 | 100, 29, 103 | sylancr 587 |
. 2
⊢ (𝜑 → (𝑂Δfunc𝑃) = 〈(1st ‘(𝑂Δfunc𝑃)), (2nd
‘(𝑂Δfunc𝑃))〉) |
| 105 | 99, 102, 104 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func
(oppFunc‘𝐿)) = (𝑂Δfunc𝑃)) |