Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag1 Structured version   Visualization version   GIF version

Theorem oppfdiag1 49383
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag1.f (𝜑𝐹 = (oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag1.a 𝐴 = (Base‘𝐶)
oppfdiag1.x (𝜑𝑋𝐴)
Assertion
Ref Expression
oppfdiag1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))

Proof of Theorem oppfdiag1
Dummy variables 𝑓 𝑦 𝑧 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag1.f . . . . 5 (𝜑𝐹 = (oppFunc ↾ (𝐷 Func 𝐶)))
2 oppfdiag1.a . . . . . . 7 𝐴 = (Base‘𝐶)
3 eqid 2730 . . . . . . . 8 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
43fucbas 17931 . . . . . . 7 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
5 oppfdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
6 oppfdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 oppfdiag.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
85, 6, 7, 3diagcl 18208 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
98func1st2nd 49053 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
102, 4, 9funcf1 17834 . . . . . 6 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
11 oppfdiag1.x . . . . . 6 (𝜑𝑋𝐴)
1210, 11ffvelcdmd 7059 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
131, 12opf11 49372 . . . 4 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st𝐿)‘𝑋)))
14 oppfdiag.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
15 eqid 2730 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1614, 15oppcbas 17685 . . . . . . . 8 (Base‘𝐷) = (Base‘𝑃)
17 oppfdiag.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
1817, 2oppcbas 17685 . . . . . . . 8 𝐴 = (Base‘𝑂)
19 eqid 2730 . . . . . . . . . . . . 13 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
2017, 19, 8oppfoppc2 49119 . . . . . . . . . . . 12 (𝜑 → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
21 eqid 2730 . . . . . . . . . . . . . 14 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
22 eqid 2730 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
23 eqidd 2731 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
2414, 17, 3, 19, 21, 22, 1, 23, 7, 6fucoppcfunc 49381 . . . . . . . . . . . . 13 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
25 df-br 5110 . . . . . . . . . . . . 13 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) ↔ ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2624, 25sylib 218 . . . . . . . . . . . 12 (𝜑 → ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2718, 20, 26, 11cofu1 17852 . . . . . . . . . . 11 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿)))‘𝑋) = ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘(oppFunc‘𝐿))‘𝑋)))
2824func1st 49054 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩) = 𝐹)
298oppf1 49116 . . . . . . . . . . . . 13 (𝜑 → (1st ‘(oppFunc‘𝐿)) = (1st𝐿))
3029fveq1d 6862 . . . . . . . . . . . 12 (𝜑 → ((1st ‘(oppFunc‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
3128, 30fveq12d 6867 . . . . . . . . . . 11 (𝜑 → ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘(oppFunc‘𝐿))‘𝑋)) = (𝐹‘((1st𝐿)‘𝑋)))
3227, 31eqtrd 2765 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿)))‘𝑋) = (𝐹‘((1st𝐿)‘𝑋)))
3321fucbas 17931 . . . . . . . . . . . 12 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
3420, 26cofucl 17856 . . . . . . . . . . . . 13 (𝜑 → (⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3534func1st2nd 49053 . . . . . . . . . . . 12 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿))))
3618, 33, 35funcf1 17834 . . . . . . . . . . 11 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿))):𝐴⟶(𝑃 Func 𝑂))
3736, 11ffvelcdmd 7059 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func (oppFunc‘𝐿)))‘𝑋) ∈ (𝑃 Func 𝑂))
3832, 37eqeltrrd 2830 . . . . . . . . 9 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂))
3938func1st2nd 49053 . . . . . . . 8 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
4016, 18, 39funcf1 17834 . . . . . . 7 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))):(Base‘𝐷)⟶𝐴)
4113, 40feq1dd 6673 . . . . . 6 (𝜑 → (1st ‘((1st𝐿)‘𝑋)):(Base‘𝐷)⟶𝐴)
4241ffnd 6691 . . . . 5 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) Fn (Base‘𝐷))
43 eqid 2730 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
4417oppccat 17689 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
456, 44syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
4614oppccat 17689 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Cat)
4843, 45, 47, 21diagcl 18208 . . . . . . . . . . 11 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
4948func1st2nd 49053 . . . . . . . . . 10 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
5018, 33, 49funcf1 17834 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):𝐴⟶(𝑃 Func 𝑂))
5150, 11ffvelcdmd 7059 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂))
5251func1st2nd 49053 . . . . . . 7 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
5316, 18, 52funcf1 17834 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)):(Base‘𝐷)⟶𝐴)
5453ffnd 6691 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn (Base‘𝐷))
556adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
567adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
5711adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑋𝐴)
58 eqid 2730 . . . . . . 7 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
59 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
605, 55, 56, 2, 57, 58, 15, 59diag11 18210 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = 𝑋)
6145adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑂 ∈ Cat)
6247adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑃 ∈ Cat)
63 eqid 2730 . . . . . . 7 ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)
6443, 61, 62, 18, 57, 63, 16, 59diag11 18210 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦) = 𝑋)
6560, 64eqtr4d 2768 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦))
6642, 54, 65eqfnfvd 7008 . . . 4 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6713, 66eqtrd 2765 . . 3 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6816, 39funcfn2 17837 . . . 4 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) Fn ((Base‘𝐷) × (Base‘𝐷)))
6916, 52funcfn2 17837 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn ((Base‘𝐷) × (Base‘𝐷)))
701, 12opf12 49373 . . . . . 6 (𝜑 → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
7170adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
72 eqid 2730 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
7372, 14oppchom 17682 . . . . . . . . . 10 (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦)
7473a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦))
75 eqid 2730 . . . . . . . . . 10 (Hom ‘𝑃) = (Hom ‘𝑃)
76 eqid 2730 . . . . . . . . . 10 (Hom ‘𝑂) = (Hom ‘𝑂)
7739adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
78 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
79 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
8016, 75, 76, 77, 78, 79funcf2 17836 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8174, 80feq2dd 6676 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8271, 81feq1dd 6673 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8382ffnd 6691 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) Fn (𝑧(Hom ‘𝐷)𝑦))
8452adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
8516, 75, 76, 84, 78, 79funcf2 17836 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8674, 85feq2dd 6676 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8786ffnd 6691 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧) Fn (𝑧(Hom ‘𝐷)𝑦))
88 eqid 2730 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
8917, 88oppcid 17688 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
906, 89syl 17 . . . . . . . . 9 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
9190fveq1d 6862 . . . . . . . 8 (𝜑 → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
9291ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
936ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐶 ∈ Cat)
9493, 44syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑂 ∈ Cat)
957ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐷 ∈ Cat)
9695, 46syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑃 ∈ Cat)
9711ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑋𝐴)
9878adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑦 ∈ (Base‘𝐷))
99 eqid 2730 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
10079adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑧 ∈ (Base‘𝐷))
101 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦))
102101, 73eleqtrrdi 2840 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑦(Hom ‘𝑃)𝑧))
10343, 94, 96, 18, 97, 63, 16, 98, 75, 99, 100, 102diag12 18211 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓) = ((Id‘𝑂)‘𝑋))
1045, 93, 95, 2, 97, 58, 15, 100, 72, 88, 98, 101diag12 18211 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
10592, 103, 1043eqtr4rd 2776 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓))
10683, 87, 105eqfnfvd 7008 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10771, 106eqtrd 2765 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10868, 69, 107eqfnovd 48842 . . 3 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) = (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
10967, 108opeq12d 4847 . 2 (𝜑 → ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩ = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
110 relfunc 17830 . . 3 Rel (𝑃 Func 𝑂)
111 1st2nd 8020 . . 3 ((Rel (𝑃 Func 𝑂) ∧ (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
112110, 38, 111sylancr 587 . 2 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
113 1st2nd 8020 . . 3 ((Rel (𝑃 Func 𝑂) ∧ ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
114110, 51, 113sylancr 587 . 2 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
115109, 112, 1143eqtr4d 2775 1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109   I cid 5534  cres 5642  Rel wrel 5645  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  Catccat 17631  Idccid 17632  oppCatcoppc 17678   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   FuncCat cfuc 17913  Δfunccdiag 18179  oppFunccoppf 49099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-oppc 17679  df-sect 17715  df-inv 17716  df-iso 17717  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-nat 17914  df-fuc 17915  df-catc 18067  df-xpc 18139  df-1stf 18140  df-curf 18181  df-diag 18183  df-oppf 49100
This theorem is referenced by:  oppfdiag1a  49384  oppfdiag  49385
  Copyright terms: Public domain W3C validator