Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag1 Structured version   Visualization version   GIF version

Theorem oppfdiag1 49419
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag1.f (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag1.a 𝐴 = (Base‘𝐶)
oppfdiag1.x (𝜑𝑋𝐴)
Assertion
Ref Expression
oppfdiag1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))

Proof of Theorem oppfdiag1
Dummy variables 𝑓 𝑦 𝑧 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag1.f . . . . 5 (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
2 oppfdiag1.a . . . . . . 7 𝐴 = (Base‘𝐶)
3 eqid 2729 . . . . . . . 8 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
43fucbas 17889 . . . . . . 7 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
5 oppfdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
6 oppfdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 oppfdiag.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
85, 6, 7, 3diagcl 18166 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
98func1st2nd 49081 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
102, 4, 9funcf1 17792 . . . . . 6 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
11 oppfdiag1.x . . . . . 6 (𝜑𝑋𝐴)
1210, 11ffvelcdmd 7023 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
131, 12opf11 49408 . . . 4 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st𝐿)‘𝑋)))
14 oppfdiag.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
15 eqid 2729 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1614, 15oppcbas 17643 . . . . . . . 8 (Base‘𝐷) = (Base‘𝑃)
17 oppfdiag.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
1817, 2oppcbas 17643 . . . . . . . 8 𝐴 = (Base‘𝑂)
19 eqid 2729 . . . . . . . . . . . . 13 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
2017, 19, 8oppfoppc2 49147 . . . . . . . . . . . 12 (𝜑 → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
21 eqid 2729 . . . . . . . . . . . . . 14 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
22 eqid 2729 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
23 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
2414, 17, 3, 19, 21, 22, 1, 23, 7, 6fucoppcfunc 49417 . . . . . . . . . . . . 13 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
25 df-br 5096 . . . . . . . . . . . . 13 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) ↔ ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2624, 25sylib 218 . . . . . . . . . . . 12 (𝜑 → ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2718, 20, 26, 11cofu1 17810 . . . . . . . . . . 11 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)))
2824func1st 49082 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩) = 𝐹)
298oppf1 49144 . . . . . . . . . . . . 13 (𝜑 → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
3029fveq1d 6828 . . . . . . . . . . . 12 (𝜑 → ((1st ‘( oppFunc ‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
3128, 30fveq12d 6833 . . . . . . . . . . 11 (𝜑 → ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)) = (𝐹‘((1st𝐿)‘𝑋)))
3227, 31eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = (𝐹‘((1st𝐿)‘𝑋)))
3321fucbas 17889 . . . . . . . . . . . 12 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
3420, 26cofucl 17814 . . . . . . . . . . . . 13 (𝜑 → (⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3534func1st2nd 49081 . . . . . . . . . . . 12 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))))
3618, 33, 35funcf1 17792 . . . . . . . . . . 11 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))):𝐴⟶(𝑃 Func 𝑂))
3736, 11ffvelcdmd 7023 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) ∈ (𝑃 Func 𝑂))
3832, 37eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂))
3938func1st2nd 49081 . . . . . . . 8 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
4016, 18, 39funcf1 17792 . . . . . . 7 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))):(Base‘𝐷)⟶𝐴)
4113, 40feq1dd 6639 . . . . . 6 (𝜑 → (1st ‘((1st𝐿)‘𝑋)):(Base‘𝐷)⟶𝐴)
4241ffnd 6657 . . . . 5 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) Fn (Base‘𝐷))
43 eqid 2729 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
4417oppccat 17647 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
456, 44syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
4614oppccat 17647 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Cat)
4843, 45, 47, 21diagcl 18166 . . . . . . . . . . 11 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
4948func1st2nd 49081 . . . . . . . . . 10 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
5018, 33, 49funcf1 17792 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):𝐴⟶(𝑃 Func 𝑂))
5150, 11ffvelcdmd 7023 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂))
5251func1st2nd 49081 . . . . . . 7 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
5316, 18, 52funcf1 17792 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)):(Base‘𝐷)⟶𝐴)
5453ffnd 6657 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn (Base‘𝐷))
556adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
567adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
5711adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑋𝐴)
58 eqid 2729 . . . . . . 7 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
59 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
605, 55, 56, 2, 57, 58, 15, 59diag11 18168 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = 𝑋)
6145adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑂 ∈ Cat)
6247adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑃 ∈ Cat)
63 eqid 2729 . . . . . . 7 ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)
6443, 61, 62, 18, 57, 63, 16, 59diag11 18168 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦) = 𝑋)
6560, 64eqtr4d 2767 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦))
6642, 54, 65eqfnfvd 6972 . . . 4 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6713, 66eqtrd 2764 . . 3 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6816, 39funcfn2 17795 . . . 4 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) Fn ((Base‘𝐷) × (Base‘𝐷)))
6916, 52funcfn2 17795 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn ((Base‘𝐷) × (Base‘𝐷)))
701, 12opf12 49409 . . . . . 6 (𝜑 → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
7170adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
72 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
7372, 14oppchom 17640 . . . . . . . . . 10 (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦)
7473a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦))
75 eqid 2729 . . . . . . . . . 10 (Hom ‘𝑃) = (Hom ‘𝑃)
76 eqid 2729 . . . . . . . . . 10 (Hom ‘𝑂) = (Hom ‘𝑂)
7739adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
78 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
79 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
8016, 75, 76, 77, 78, 79funcf2 17794 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8174, 80feq2dd 6642 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8271, 81feq1dd 6639 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8382ffnd 6657 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) Fn (𝑧(Hom ‘𝐷)𝑦))
8452adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
8516, 75, 76, 84, 78, 79funcf2 17794 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8674, 85feq2dd 6642 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8786ffnd 6657 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧) Fn (𝑧(Hom ‘𝐷)𝑦))
88 eqid 2729 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
8917, 88oppcid 17646 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
906, 89syl 17 . . . . . . . . 9 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
9190fveq1d 6828 . . . . . . . 8 (𝜑 → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
9291ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
936ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐶 ∈ Cat)
9493, 44syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑂 ∈ Cat)
957ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐷 ∈ Cat)
9695, 46syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑃 ∈ Cat)
9711ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑋𝐴)
9878adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑦 ∈ (Base‘𝐷))
99 eqid 2729 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
10079adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑧 ∈ (Base‘𝐷))
101 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦))
102101, 73eleqtrrdi 2839 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑦(Hom ‘𝑃)𝑧))
10343, 94, 96, 18, 97, 63, 16, 98, 75, 99, 100, 102diag12 18169 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓) = ((Id‘𝑂)‘𝑋))
1045, 93, 95, 2, 97, 58, 15, 100, 72, 88, 98, 101diag12 18169 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
10592, 103, 1043eqtr4rd 2775 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓))
10683, 87, 105eqfnfvd 6972 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10771, 106eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10868, 69, 107eqfnovd 48870 . . 3 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) = (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
10967, 108opeq12d 4835 . 2 (𝜑 → ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩ = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
110 relfunc 17788 . . 3 Rel (𝑃 Func 𝑂)
111 1st2nd 7981 . . 3 ((Rel (𝑃 Func 𝑂) ∧ (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
112110, 38, 111sylancr 587 . 2 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
113 1st2nd 7981 . . 3 ((Rel (𝑃 Func 𝑂) ∧ ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
114110, 51, 113sylancr 587 . 2 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
115109, 112, 1143eqtr4d 2774 1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095   I cid 5517  cres 5625  Rel wrel 5628  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  Catccat 17589  Idccid 17590  oppCatcoppc 17636   Func cfunc 17780  func ccofu 17782   Nat cnat 17870   FuncCat cfuc 17871  Δfunccdiag 18137   oppFunc coppf 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-oppc 17637  df-sect 17673  df-inv 17674  df-iso 17675  df-func 17784  df-idfu 17785  df-cofu 17786  df-full 17832  df-fth 17833  df-nat 17872  df-fuc 17873  df-catc 18025  df-xpc 18097  df-1stf 18098  df-curf 18139  df-diag 18141  df-oppf 49128
This theorem is referenced by:  oppfdiag1a  49420  oppfdiag  49421
  Copyright terms: Public domain W3C validator