Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag1 Structured version   Visualization version   GIF version

Theorem oppfdiag1 49376
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag1.f (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag1.a 𝐴 = (Base‘𝐶)
oppfdiag1.x (𝜑𝑋𝐴)
Assertion
Ref Expression
oppfdiag1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))

Proof of Theorem oppfdiag1
Dummy variables 𝑓 𝑦 𝑧 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag1.f . . . . 5 (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
2 oppfdiag1.a . . . . . . 7 𝐴 = (Base‘𝐶)
3 eqid 2729 . . . . . . . 8 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
43fucbas 17901 . . . . . . 7 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
5 oppfdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
6 oppfdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 oppfdiag.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
85, 6, 7, 3diagcl 18178 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
98func1st2nd 49038 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
102, 4, 9funcf1 17804 . . . . . 6 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
11 oppfdiag1.x . . . . . 6 (𝜑𝑋𝐴)
1210, 11ffvelcdmd 7039 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
131, 12opf11 49365 . . . 4 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st𝐿)‘𝑋)))
14 oppfdiag.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
15 eqid 2729 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1614, 15oppcbas 17655 . . . . . . . 8 (Base‘𝐷) = (Base‘𝑃)
17 oppfdiag.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
1817, 2oppcbas 17655 . . . . . . . 8 𝐴 = (Base‘𝑂)
19 eqid 2729 . . . . . . . . . . . . 13 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
2017, 19, 8oppfoppc2 49104 . . . . . . . . . . . 12 (𝜑 → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
21 eqid 2729 . . . . . . . . . . . . . 14 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
22 eqid 2729 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
23 eqidd 2730 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
2414, 17, 3, 19, 21, 22, 1, 23, 7, 6fucoppcfunc 49374 . . . . . . . . . . . . 13 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
25 df-br 5103 . . . . . . . . . . . . 13 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) ↔ ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2624, 25sylib 218 . . . . . . . . . . . 12 (𝜑 → ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2718, 20, 26, 11cofu1 17822 . . . . . . . . . . 11 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)))
2824func1st 49039 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩) = 𝐹)
298oppf1 49101 . . . . . . . . . . . . 13 (𝜑 → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
3029fveq1d 6842 . . . . . . . . . . . 12 (𝜑 → ((1st ‘( oppFunc ‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
3128, 30fveq12d 6847 . . . . . . . . . . 11 (𝜑 → ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)) = (𝐹‘((1st𝐿)‘𝑋)))
3227, 31eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = (𝐹‘((1st𝐿)‘𝑋)))
3321fucbas 17901 . . . . . . . . . . . 12 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
3420, 26cofucl 17826 . . . . . . . . . . . . 13 (𝜑 → (⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3534func1st2nd 49038 . . . . . . . . . . . 12 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))))
3618, 33, 35funcf1 17804 . . . . . . . . . . 11 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))):𝐴⟶(𝑃 Func 𝑂))
3736, 11ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) ∈ (𝑃 Func 𝑂))
3832, 37eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂))
3938func1st2nd 49038 . . . . . . . 8 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
4016, 18, 39funcf1 17804 . . . . . . 7 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))):(Base‘𝐷)⟶𝐴)
4113, 40feq1dd 6653 . . . . . 6 (𝜑 → (1st ‘((1st𝐿)‘𝑋)):(Base‘𝐷)⟶𝐴)
4241ffnd 6671 . . . . 5 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) Fn (Base‘𝐷))
43 eqid 2729 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
4417oppccat 17659 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
456, 44syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
4614oppccat 17659 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Cat)
4843, 45, 47, 21diagcl 18178 . . . . . . . . . . 11 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
4948func1st2nd 49038 . . . . . . . . . 10 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
5018, 33, 49funcf1 17804 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):𝐴⟶(𝑃 Func 𝑂))
5150, 11ffvelcdmd 7039 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂))
5251func1st2nd 49038 . . . . . . 7 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
5316, 18, 52funcf1 17804 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)):(Base‘𝐷)⟶𝐴)
5453ffnd 6671 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn (Base‘𝐷))
556adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
567adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
5711adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑋𝐴)
58 eqid 2729 . . . . . . 7 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
59 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
605, 55, 56, 2, 57, 58, 15, 59diag11 18180 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = 𝑋)
6145adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑂 ∈ Cat)
6247adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑃 ∈ Cat)
63 eqid 2729 . . . . . . 7 ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)
6443, 61, 62, 18, 57, 63, 16, 59diag11 18180 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦) = 𝑋)
6560, 64eqtr4d 2767 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦))
6642, 54, 65eqfnfvd 6988 . . . 4 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6713, 66eqtrd 2764 . . 3 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6816, 39funcfn2 17807 . . . 4 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) Fn ((Base‘𝐷) × (Base‘𝐷)))
6916, 52funcfn2 17807 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn ((Base‘𝐷) × (Base‘𝐷)))
701, 12opf12 49366 . . . . . 6 (𝜑 → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
7170adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
72 eqid 2729 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
7372, 14oppchom 17652 . . . . . . . . . 10 (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦)
7473a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦))
75 eqid 2729 . . . . . . . . . 10 (Hom ‘𝑃) = (Hom ‘𝑃)
76 eqid 2729 . . . . . . . . . 10 (Hom ‘𝑂) = (Hom ‘𝑂)
7739adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
78 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
79 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
8016, 75, 76, 77, 78, 79funcf2 17806 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8174, 80feq2dd 6656 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8271, 81feq1dd 6653 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8382ffnd 6671 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) Fn (𝑧(Hom ‘𝐷)𝑦))
8452adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
8516, 75, 76, 84, 78, 79funcf2 17806 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8674, 85feq2dd 6656 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8786ffnd 6671 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧) Fn (𝑧(Hom ‘𝐷)𝑦))
88 eqid 2729 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
8917, 88oppcid 17658 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
906, 89syl 17 . . . . . . . . 9 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
9190fveq1d 6842 . . . . . . . 8 (𝜑 → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
9291ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
936ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐶 ∈ Cat)
9493, 44syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑂 ∈ Cat)
957ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐷 ∈ Cat)
9695, 46syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑃 ∈ Cat)
9711ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑋𝐴)
9878adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑦 ∈ (Base‘𝐷))
99 eqid 2729 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
10079adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑧 ∈ (Base‘𝐷))
101 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦))
102101, 73eleqtrrdi 2839 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑦(Hom ‘𝑃)𝑧))
10343, 94, 96, 18, 97, 63, 16, 98, 75, 99, 100, 102diag12 18181 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓) = ((Id‘𝑂)‘𝑋))
1045, 93, 95, 2, 97, 58, 15, 100, 72, 88, 98, 101diag12 18181 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
10592, 103, 1043eqtr4rd 2775 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓))
10683, 87, 105eqfnfvd 6988 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10771, 106eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10868, 69, 107eqfnovd 48827 . . 3 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) = (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
10967, 108opeq12d 4841 . 2 (𝜑 → ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩ = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
110 relfunc 17800 . . 3 Rel (𝑃 Func 𝑂)
111 1st2nd 7997 . . 3 ((Rel (𝑃 Func 𝑂) ∧ (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
112110, 38, 111sylancr 587 . 2 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
113 1st2nd 7997 . . 3 ((Rel (𝑃 Func 𝑂) ∧ ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
114110, 51, 113sylancr 587 . 2 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
115109, 112, 1143eqtr4d 2774 1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102   I cid 5525  cres 5633  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17601  Idccid 17602  oppCatcoppc 17648   Func cfunc 17792  func ccofu 17794   Nat cnat 17882   FuncCat cfuc 17883  Δfunccdiag 18149   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-oppc 17649  df-sect 17685  df-inv 17686  df-iso 17687  df-func 17796  df-idfu 17797  df-cofu 17798  df-full 17844  df-fth 17845  df-nat 17884  df-fuc 17885  df-catc 18037  df-xpc 18109  df-1stf 18110  df-curf 18151  df-diag 18153  df-oppf 49085
This theorem is referenced by:  oppfdiag1a  49377  oppfdiag  49378
  Copyright terms: Public domain W3C validator