| Step | Hyp | Ref
| Expression |
| 1 | | oppfdiag1.f |
. . . . 5
⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐷 Func 𝐶))) |
| 2 | | oppfdiag1.a |
. . . . . . 7
⊢ 𝐴 = (Base‘𝐶) |
| 3 | | eqid 2730 |
. . . . . . . 8
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 4 | 3 | fucbas 17931 |
. . . . . . 7
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 5 | | oppfdiag.l |
. . . . . . . . 9
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 6 | | oppfdiag.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | | oppfdiag.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 8 | 5, 6, 7, 3 | diagcl 18208 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 9 | 8 | func1st2nd 49053 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 10 | 2, 4, 9 | funcf1 17834 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐿):𝐴⟶(𝐷 Func 𝐶)) |
| 11 | | oppfdiag1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 12 | 10, 11 | ffvelcdmd 7059 |
. . . . 5
⊢ (𝜑 → ((1st
‘𝐿)‘𝑋) ∈ (𝐷 Func 𝐶)) |
| 13 | 1, 12 | opf11 49372 |
. . . 4
⊢ (𝜑 → (1st
‘(𝐹‘((1st ‘𝐿)‘𝑋))) = (1st
‘((1st ‘𝐿)‘𝑋))) |
| 14 | | oppfdiag.p |
. . . . . . . . 9
⊢ 𝑃 = (oppCat‘𝐷) |
| 15 | | eqid 2730 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 16 | 14, 15 | oppcbas 17685 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝑃) |
| 17 | | oppfdiag.o |
. . . . . . . . 9
⊢ 𝑂 = (oppCat‘𝐶) |
| 18 | 17, 2 | oppcbas 17685 |
. . . . . . . 8
⊢ 𝐴 = (Base‘𝑂) |
| 19 | | eqid 2730 |
. . . . . . . . . . . . 13
⊢
(oppCat‘(𝐷
FuncCat 𝐶)) =
(oppCat‘(𝐷 FuncCat
𝐶)) |
| 20 | 17, 19, 8 | oppfoppc2 49119 |
. . . . . . . . . . . 12
⊢ (𝜑 → (oppFunc‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 21 | | eqid 2730 |
. . . . . . . . . . . . . 14
⊢ (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂) |
| 22 | | eqid 2730 |
. . . . . . . . . . . . . 14
⊢ (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶) |
| 23 | | eqidd 2731 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))) |
| 24 | 14, 17, 3, 19, 21, 22, 1, 23, 7, 6 | fucoppcfunc 49381 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))) |
| 25 | | df-br 5110 |
. . . . . . . . . . . . 13
⊢ (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) ↔ 〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 26 | 24, 25 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))) |
| 27 | 18, 20, 26, 11 | cofu1 17852 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1st
‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)))‘𝑋) = ((1st ‘〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉)‘((1st
‘(oppFunc‘𝐿))‘𝑋))) |
| 28 | 24 | func1st 49054 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉) = 𝐹) |
| 29 | 8 | oppf1 49116 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘(oppFunc‘𝐿)) =
(1st ‘𝐿)) |
| 30 | 29 | fveq1d 6862 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1st
‘(oppFunc‘𝐿))‘𝑋) = ((1st ‘𝐿)‘𝑋)) |
| 31 | 28, 30 | fveq12d 6867 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1st
‘〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉)‘((1st
‘(oppFunc‘𝐿))‘𝑋)) = (𝐹‘((1st ‘𝐿)‘𝑋))) |
| 32 | 27, 31 | eqtrd 2765 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)))‘𝑋) = (𝐹‘((1st ‘𝐿)‘𝑋))) |
| 33 | 21 | fucbas 17931 |
. . . . . . . . . . . 12
⊢ (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂)) |
| 34 | 20, 26 | cofucl 17856 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)) ∈
(𝑂 Func (𝑃 FuncCat 𝑂))) |
| 35 | 34 | func1st2nd 49053 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)))) |
| 36 | 18, 33, 35 | funcf1 17834 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿))):𝐴⟶(𝑃 Func 𝑂)) |
| 37 | 36, 11 | ffvelcdmd 7059 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘(〈𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))〉 ∘func
(oppFunc‘𝐿)))‘𝑋) ∈ (𝑃 Func 𝑂)) |
| 38 | 32, 37 | eqeltrrd 2830 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘((1st ‘𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) |
| 39 | 38 | func1st2nd 49053 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(𝐹‘((1st ‘𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))) |
| 40 | 16, 18, 39 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(𝐹‘((1st ‘𝐿)‘𝑋))):(Base‘𝐷)⟶𝐴) |
| 41 | 13, 40 | feq1dd 6673 |
. . . . . 6
⊢ (𝜑 → (1st
‘((1st ‘𝐿)‘𝑋)):(Base‘𝐷)⟶𝐴) |
| 42 | 41 | ffnd 6691 |
. . . . 5
⊢ (𝜑 → (1st
‘((1st ‘𝐿)‘𝑋)) Fn (Base‘𝐷)) |
| 43 | | eqid 2730 |
. . . . . . . . . . . 12
⊢ (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃) |
| 44 | 17 | oppccat 17689 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 45 | 6, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂 ∈ Cat) |
| 46 | 14 | oppccat 17689 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 47 | 7, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Cat) |
| 48 | 43, 45, 47, 21 | diagcl 18208 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂))) |
| 49 | 48 | func1st2nd 49053 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃))) |
| 50 | 18, 33, 49 | funcf1 17834 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘(𝑂Δfunc𝑃)):𝐴⟶(𝑃 Func 𝑂)) |
| 51 | 50, 11 | ffvelcdmd 7059 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) |
| 52 | 51 | func1st2nd 49053 |
. . . . . . 7
⊢ (𝜑 → (1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))) |
| 53 | 16, 18, 52 | funcf1 17834 |
. . . . . 6
⊢ (𝜑 → (1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)):(Base‘𝐷)⟶𝐴) |
| 54 | 53 | ffnd 6691 |
. . . . 5
⊢ (𝜑 → (1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn (Base‘𝐷)) |
| 55 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat) |
| 56 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
| 57 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑋 ∈ 𝐴) |
| 58 | | eqid 2730 |
. . . . . . 7
⊢
((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) |
| 59 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷)) |
| 60 | 5, 55, 56, 2, 57, 58, 15, 59 | diag11 18210 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐿)‘𝑋))‘𝑦) = 𝑋) |
| 61 | 45 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑂 ∈ Cat) |
| 62 | 47 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑃 ∈ Cat) |
| 63 | | eqid 2730 |
. . . . . . 7
⊢
((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋) |
| 64 | 43, 61, 62, 18, 57, 63, 16, 59 | diag11 18210 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦) = 𝑋) |
| 65 | 60, 64 | eqtr4d 2768 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st
‘((1st ‘𝐿)‘𝑋))‘𝑦) = ((1st ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)) |
| 66 | 42, 54, 65 | eqfnfvd 7008 |
. . . 4
⊢ (𝜑 → (1st
‘((1st ‘𝐿)‘𝑋)) = (1st ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))) |
| 67 | 13, 66 | eqtrd 2765 |
. . 3
⊢ (𝜑 → (1st
‘(𝐹‘((1st ‘𝐿)‘𝑋))) = (1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))) |
| 68 | 16, 39 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹‘((1st ‘𝐿)‘𝑋))) Fn ((Base‘𝐷) × (Base‘𝐷))) |
| 69 | 16, 52 | funcfn2 17837 |
. . . 4
⊢ (𝜑 → (2nd
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn ((Base‘𝐷) × (Base‘𝐷))) |
| 70 | 1, 12 | opf12 49373 |
. . . . . 6
⊢ (𝜑 → (𝑦(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦)) |
| 71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦)) |
| 72 | | eqid 2730 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 73 | 72, 14 | oppchom 17682 |
. . . . . . . . . 10
⊢ (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦) |
| 74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦)) |
| 75 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝑃) = (Hom
‘𝑃) |
| 76 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
| 77 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘(𝐹‘((1st
‘𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))) |
| 78 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
| 79 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷)) |
| 80 | 16, 75, 76, 77, 78, 79 | funcf2 17836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘(𝐹‘((1st
‘𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st ‘𝐿)‘𝑋)))‘𝑧))) |
| 81 | 74, 80 | feq2dd 6676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st
‘𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st ‘𝐿)‘𝑋)))‘𝑧))) |
| 82 | 71, 81 | feq1dd 6673 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st
‘𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st ‘𝐿)‘𝑋)))‘𝑧))) |
| 83 | 82 | ffnd 6691 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦) Fn (𝑧(Hom ‘𝐷)𝑦)) |
| 84 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))) |
| 85 | 16, 75, 76, 84, 78, 79 | funcf2 17836 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧))) |
| 86 | 74, 85 | feq2dd 6676 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧))) |
| 87 | 86 | ffnd 6691 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧) Fn (𝑧(Hom ‘𝐷)𝑦)) |
| 88 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 89 | 17, 88 | oppcid 17688 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(Id‘𝑂) =
(Id‘𝐶)) |
| 90 | 6, 89 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (Id‘𝑂) = (Id‘𝐶)) |
| 91 | 90 | fveq1d 6862 |
. . . . . . . 8
⊢ (𝜑 → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋)) |
| 92 | 91 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋)) |
| 93 | 6 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐶 ∈ Cat) |
| 94 | 93, 44 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑂 ∈ Cat) |
| 95 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐷 ∈ Cat) |
| 96 | 95, 46 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑃 ∈ Cat) |
| 97 | 11 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑋 ∈ 𝐴) |
| 98 | 78 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑦 ∈ (Base‘𝐷)) |
| 99 | | eqid 2730 |
. . . . . . . 8
⊢
(Id‘𝑂) =
(Id‘𝑂) |
| 100 | 79 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑧 ∈ (Base‘𝐷)) |
| 101 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) |
| 102 | 101, 73 | eleqtrrdi 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑦(Hom ‘𝑃)𝑧)) |
| 103 | 43, 94, 96, 18, 97, 63, 16, 98, 75, 99, 100, 102 | diag12 18211 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓) = ((Id‘𝑂)‘𝑋)) |
| 104 | 5, 93, 95, 2, 97, 58, 15, 100, 72, 88, 98, 101 | diag12 18211 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋)) |
| 105 | 92, 103, 104 | 3eqtr4rd 2776 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦)‘𝑓) = ((𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓)) |
| 106 | 83, 87, 105 | eqfnfvd 7008 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st
‘𝐿)‘𝑋))𝑦) = (𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧)) |
| 107 | 71, 106 | eqtrd 2765 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st ‘𝐿)‘𝑋)))𝑧) = (𝑦(2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))𝑧)) |
| 108 | 68, 69, 107 | eqfnovd 48842 |
. . 3
⊢ (𝜑 → (2nd
‘(𝐹‘((1st ‘𝐿)‘𝑋))) = (2nd
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))) |
| 109 | 67, 108 | opeq12d 4847 |
. 2
⊢ (𝜑 → 〈(1st
‘(𝐹‘((1st ‘𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st
‘𝐿)‘𝑋)))〉 =
〈(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))〉) |
| 110 | | relfunc 17830 |
. . 3
⊢ Rel
(𝑃 Func 𝑂) |
| 111 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝑃 Func 𝑂) ∧ (𝐹‘((1st ‘𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) → (𝐹‘((1st ‘𝐿)‘𝑋)) = 〈(1st ‘(𝐹‘((1st
‘𝐿)‘𝑋))), (2nd
‘(𝐹‘((1st ‘𝐿)‘𝑋)))〉) |
| 112 | 110, 38, 111 | sylancr 587 |
. 2
⊢ (𝜑 → (𝐹‘((1st ‘𝐿)‘𝑋)) = 〈(1st ‘(𝐹‘((1st
‘𝐿)‘𝑋))), (2nd
‘(𝐹‘((1st ‘𝐿)‘𝑋)))〉) |
| 113 | | 1st2nd 8020 |
. . 3
⊢ ((Rel
(𝑃 Func 𝑂) ∧ ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = 〈(1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))〉) |
| 114 | 110, 51, 113 | sylancr 587 |
. 2
⊢ (𝜑 → ((1st
‘(𝑂Δfunc𝑃))‘𝑋) = 〈(1st
‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st
‘(𝑂Δfunc𝑃))‘𝑋))〉) |
| 115 | 109, 112,
114 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (𝐹‘((1st ‘𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)) |