Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfdiag1 Structured version   Visualization version   GIF version

Theorem oppfdiag1 49446
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppfdiag.o 𝑂 = (oppCat‘𝐶)
oppfdiag.p 𝑃 = (oppCat‘𝐷)
oppfdiag.l 𝐿 = (𝐶Δfunc𝐷)
oppfdiag.c (𝜑𝐶 ∈ Cat)
oppfdiag.d (𝜑𝐷 ∈ Cat)
oppfdiag1.f (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
oppfdiag1.a 𝐴 = (Base‘𝐶)
oppfdiag1.x (𝜑𝑋𝐴)
Assertion
Ref Expression
oppfdiag1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))

Proof of Theorem oppfdiag1
Dummy variables 𝑓 𝑦 𝑧 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfdiag1.f . . . . 5 (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))
2 oppfdiag1.a . . . . . . 7 𝐴 = (Base‘𝐶)
3 eqid 2731 . . . . . . . 8 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
43fucbas 17865 . . . . . . 7 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
5 oppfdiag.l . . . . . . . . 9 𝐿 = (𝐶Δfunc𝐷)
6 oppfdiag.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 oppfdiag.d . . . . . . . . 9 (𝜑𝐷 ∈ Cat)
85, 6, 7, 3diagcl 18142 . . . . . . . 8 (𝜑𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
98func1st2nd 49108 . . . . . . 7 (𝜑 → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
102, 4, 9funcf1 17768 . . . . . 6 (𝜑 → (1st𝐿):𝐴⟶(𝐷 Func 𝐶))
11 oppfdiag1.x . . . . . 6 (𝜑𝑋𝐴)
1210, 11ffvelcdmd 7013 . . . . 5 (𝜑 → ((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶))
131, 12opf11 49435 . . . 4 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st𝐿)‘𝑋)))
14 oppfdiag.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
15 eqid 2731 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1614, 15oppcbas 17619 . . . . . . . 8 (Base‘𝐷) = (Base‘𝑃)
17 oppfdiag.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
1817, 2oppcbas 17619 . . . . . . . 8 𝐴 = (Base‘𝑂)
19 eqid 2731 . . . . . . . . . . . . 13 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
2017, 19, 8oppfoppc2 49174 . . . . . . . . . . . 12 (𝜑 → ( oppFunc ‘𝐿) ∈ (𝑂 Func (oppCat‘(𝐷 FuncCat 𝐶))))
21 eqid 2731 . . . . . . . . . . . . . 14 (𝑃 FuncCat 𝑂) = (𝑃 FuncCat 𝑂)
22 eqid 2731 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐶) = (𝐷 Nat 𝐶)
23 eqidd 2732 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
2414, 17, 3, 19, 21, 22, 1, 23, 7, 6fucoppcfunc 49444 . . . . . . . . . . . . 13 (𝜑𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))))
25 df-br 5087 . . . . . . . . . . . . 13 (𝐹((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂))(𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚))) ↔ ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2624, 25sylib 218 . . . . . . . . . . . 12 (𝜑 → ⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∈ ((oppCat‘(𝐷 FuncCat 𝐶)) Func (𝑃 FuncCat 𝑂)))
2718, 20, 26, 11cofu1 17786 . . . . . . . . . . 11 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)))
2824func1st 49109 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩) = 𝐹)
298oppf1 49171 . . . . . . . . . . . . 13 (𝜑 → (1st ‘( oppFunc ‘𝐿)) = (1st𝐿))
3029fveq1d 6819 . . . . . . . . . . . 12 (𝜑 → ((1st ‘( oppFunc ‘𝐿))‘𝑋) = ((1st𝐿)‘𝑋))
3128, 30fveq12d 6824 . . . . . . . . . . 11 (𝜑 → ((1st ‘⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩)‘((1st ‘( oppFunc ‘𝐿))‘𝑋)) = (𝐹‘((1st𝐿)‘𝑋)))
3227, 31eqtrd 2766 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) = (𝐹‘((1st𝐿)‘𝑋)))
3321fucbas 17865 . . . . . . . . . . . 12 (𝑃 Func 𝑂) = (Base‘(𝑃 FuncCat 𝑂))
3420, 26cofucl 17790 . . . . . . . . . . . . 13 (𝜑 → (⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
3534func1st2nd 49108 . . . . . . . . . . . 12 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))))
3618, 33, 35funcf1 17768 . . . . . . . . . . 11 (𝜑 → (1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿))):𝐴⟶(𝑃 Func 𝑂))
3736, 11ffvelcdmd 7013 . . . . . . . . . 10 (𝜑 → ((1st ‘(⟨𝐹, (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛(𝐷 Nat 𝐶)𝑚)))⟩ ∘func ( oppFunc ‘𝐿)))‘𝑋) ∈ (𝑃 Func 𝑂))
3832, 37eqeltrrd 2832 . . . . . . . . 9 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂))
3938func1st2nd 49108 . . . . . . . 8 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
4016, 18, 39funcf1 17768 . . . . . . 7 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))):(Base‘𝐷)⟶𝐴)
4113, 40feq1dd 6629 . . . . . 6 (𝜑 → (1st ‘((1st𝐿)‘𝑋)):(Base‘𝐷)⟶𝐴)
4241ffnd 6647 . . . . 5 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) Fn (Base‘𝐷))
43 eqid 2731 . . . . . . . . . . . 12 (𝑂Δfunc𝑃) = (𝑂Δfunc𝑃)
4417oppccat 17623 . . . . . . . . . . . . 13 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
456, 44syl 17 . . . . . . . . . . . 12 (𝜑𝑂 ∈ Cat)
4614oppccat 17623 . . . . . . . . . . . . 13 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Cat)
4843, 45, 47, 21diagcl 18142 . . . . . . . . . . 11 (𝜑 → (𝑂Δfunc𝑃) ∈ (𝑂 Func (𝑃 FuncCat 𝑂)))
4948func1st2nd 49108 . . . . . . . . . 10 (𝜑 → (1st ‘(𝑂Δfunc𝑃))(𝑂 Func (𝑃 FuncCat 𝑂))(2nd ‘(𝑂Δfunc𝑃)))
5018, 33, 49funcf1 17768 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂Δfunc𝑃)):𝐴⟶(𝑃 Func 𝑂))
5150, 11ffvelcdmd 7013 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂))
5251func1st2nd 49108 . . . . . . 7 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
5316, 18, 52funcf1 17768 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)):(Base‘𝐷)⟶𝐴)
5453ffnd 6647 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn (Base‘𝐷))
556adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
567adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
5711adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑋𝐴)
58 eqid 2731 . . . . . . 7 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
59 simpr 484 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
605, 55, 56, 2, 57, 58, 15, 59diag11 18144 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = 𝑋)
6145adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑂 ∈ Cat)
6247adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝐷)) → 𝑃 ∈ Cat)
63 eqid 2731 . . . . . . 7 ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)
6443, 61, 62, 18, 57, 63, 16, 59diag11 18144 . . . . . 6 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦) = 𝑋)
6560, 64eqtr4d 2769 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐿)‘𝑋))‘𝑦) = ((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦))
6642, 54, 65eqfnfvd 6962 . . . 4 (𝜑 → (1st ‘((1st𝐿)‘𝑋)) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6713, 66eqtrd 2766 . . 3 (𝜑 → (1st ‘(𝐹‘((1st𝐿)‘𝑋))) = (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
6816, 39funcfn2 17771 . . . 4 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) Fn ((Base‘𝐷) × (Base‘𝐷)))
6916, 52funcfn2 17771 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)) Fn ((Base‘𝐷) × (Base‘𝐷)))
701, 12opf12 49436 . . . . . 6 (𝜑 → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
7170adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦))
72 eqid 2731 . . . . . . . . . . 11 (Hom ‘𝐷) = (Hom ‘𝐷)
7372, 14oppchom 17616 . . . . . . . . . 10 (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦)
7473a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(Hom ‘𝑃)𝑧) = (𝑧(Hom ‘𝐷)𝑦))
75 eqid 2731 . . . . . . . . . 10 (Hom ‘𝑃) = (Hom ‘𝑃)
76 eqid 2731 . . . . . . . . . 10 (Hom ‘𝑂) = (Hom ‘𝑂)
7739adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘(𝐹‘((1st𝐿)‘𝑋)))(𝑃 Func 𝑂)(2nd ‘(𝐹‘((1st𝐿)‘𝑋))))
78 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
79 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
8016, 75, 76, 77, 78, 79funcf2 17770 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8174, 80feq2dd 6632 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8271, 81feq1dd 6629 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑦)(Hom ‘𝑂)((1st ‘(𝐹‘((1st𝐿)‘𝑋)))‘𝑧)))
8382ffnd 6647 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) Fn (𝑧(Hom ‘𝐷)𝑦))
8452adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))(𝑃 Func 𝑂)(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
8516, 75, 76, 84, 78, 79funcf2 17770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑦(Hom ‘𝑃)𝑧)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8674, 85feq2dd 6632 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧):(𝑧(Hom ‘𝐷)𝑦)⟶(((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑦)(Hom ‘𝑂)((1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))‘𝑧)))
8786ffnd 6647 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧) Fn (𝑧(Hom ‘𝐷)𝑦))
88 eqid 2731 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
8917, 88oppcid 17622 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
906, 89syl 17 . . . . . . . . 9 (𝜑 → (Id‘𝑂) = (Id‘𝐶))
9190fveq1d 6819 . . . . . . . 8 (𝜑 → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
9291ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
936ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐶 ∈ Cat)
9493, 44syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑂 ∈ Cat)
957ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝐷 ∈ Cat)
9695, 46syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑃 ∈ Cat)
9711ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑋𝐴)
9878adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑦 ∈ (Base‘𝐷))
99 eqid 2731 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
10079adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑧 ∈ (Base‘𝐷))
101 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦))
102101, 73eleqtrrdi 2842 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → 𝑓 ∈ (𝑦(Hom ‘𝑃)𝑧))
10343, 94, 96, 18, 97, 63, 16, 98, 75, 99, 100, 102diag12 18145 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓) = ((Id‘𝑂)‘𝑋))
1045, 93, 95, 2, 97, 58, 15, 100, 72, 88, 98, 101diag12 18145 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((Id‘𝐶)‘𝑋))
10592, 103, 1043eqtr4rd 2777 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑦)) → ((𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦)‘𝑓) = ((𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧)‘𝑓))
10683, 87, 105eqfnfvd 6962 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑧(2nd ‘((1st𝐿)‘𝑋))𝑦) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10771, 106eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘(𝐹‘((1st𝐿)‘𝑋)))𝑧) = (𝑦(2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))𝑧))
10868, 69, 107eqfnovd 48897 . . 3 (𝜑 → (2nd ‘(𝐹‘((1st𝐿)‘𝑋))) = (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)))
10967, 108opeq12d 4828 . 2 (𝜑 → ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩ = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
110 relfunc 17764 . . 3 Rel (𝑃 Func 𝑂)
111 1st2nd 7966 . . 3 ((Rel (𝑃 Func 𝑂) ∧ (𝐹‘((1st𝐿)‘𝑋)) ∈ (𝑃 Func 𝑂)) → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
112110, 38, 111sylancr 587 . 2 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ⟨(1st ‘(𝐹‘((1st𝐿)‘𝑋))), (2nd ‘(𝐹‘((1st𝐿)‘𝑋)))⟩)
113 1st2nd 7966 . . 3 ((Rel (𝑃 Func 𝑂) ∧ ((1st ‘(𝑂Δfunc𝑃))‘𝑋) ∈ (𝑃 Func 𝑂)) → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
114110, 51, 113sylancr 587 . 2 (𝜑 → ((1st ‘(𝑂Δfunc𝑃))‘𝑋) = ⟨(1st ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋)), (2nd ‘((1st ‘(𝑂Δfunc𝑃))‘𝑋))⟩)
115109, 112, 1143eqtr4d 2776 1 (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4577   class class class wbr 5086   I cid 5505  cres 5613  Rel wrel 5616  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167  Catccat 17565  Idccid 17566  oppCatcoppc 17612   Func cfunc 17756  func ccofu 17758   Nat cnat 17846   FuncCat cfuc 17847  Δfunccdiag 18113   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-oppc 17613  df-sect 17649  df-inv 17650  df-iso 17651  df-func 17760  df-idfu 17761  df-cofu 17762  df-full 17808  df-fth 17809  df-nat 17848  df-fuc 17849  df-catc 18001  df-xpc 18073  df-1stf 18074  df-curf 18115  df-diag 18117  df-oppf 49155
This theorem is referenced by:  oppfdiag1a  49447  oppfdiag  49448
  Copyright terms: Public domain W3C validator