MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrnb Structured version   Visualization version   GIF version

Theorem ffrnb 6725
Description: Characterization of a function with domain and codomain (essentially using that the range is always included in the codomain). Generalization of ffrn 6724. (Contributed by BJ, 21-Sep-2024.)
Assertion
Ref Expression
ffrnb (𝐹:𝐴𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹𝐵))

Proof of Theorem ffrnb
StepHypRef Expression
1 df-f 6540 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn3 6723 . . 3 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
32anbi1i 624 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 275 1 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3931  ran crn 5660   Fn wfn 6531  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3948  df-f 6540
This theorem is referenced by:  ffrnbd  6726
  Copyright terms: Public domain W3C validator