MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrnb Structured version   Visualization version   GIF version

Theorem ffrnb 6731
Description: Characterization of a function with domain and codomain (essentially using that the range is always included in the codomain). Generalization of ffrn 6730. (Contributed by BJ, 21-Sep-2024.)
Assertion
Ref Expression
ffrnb (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴⟢ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))

Proof of Theorem ffrnb
StepHypRef Expression
1 df-f 6546 . 2 (𝐹:𝐴⟢𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡))
2 dffn3 6729 . . 3 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)
32anbi1i 623 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† 𝐡) ↔ (𝐹:𝐴⟢ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
41, 3bitri 275 1 (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴⟢ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   βŠ† wss 3945  ran crn 5673   Fn wfn 6537  βŸΆwf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-in 3952  df-ss 3962  df-f 6546
This theorem is referenced by:  ffrnbd  6732
  Copyright terms: Public domain W3C validator