Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffrnb | Structured version Visualization version GIF version |
Description: Characterization of a function with domain and codomain (essentially using that the range is always included in the codomain). Generalization of ffrn 6598. (Contributed by BJ, 21-Sep-2024.) |
Ref | Expression |
---|---|
ffrnb | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | dffn3 6597 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
3 | 2 | anbi1i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹:𝐴⟶ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 |
This theorem is referenced by: ffrnbd 6600 |
Copyright terms: Public domain | W3C validator |