MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrn Structured version   Visualization version   GIF version

Theorem ffrn 6614
Description: A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ffrn (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)

Proof of Theorem ffrn
StepHypRef Expression
1 ffn 6600 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 6613 . 2 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 217 1 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ran crn 5590   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-f 6437
This theorem is referenced by:  fo2ndf  7962  mapsnd  8674  itg1val2  24848  selvval2lem4  40228  volicoff  43536  f1cof1b  44569  f1ocof1ob  44573  fundcmpsurbijinjpreimafv  44859
  Copyright terms: Public domain W3C validator