MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrn Structured version   Visualization version   GIF version

Theorem ffrn 6598
Description: A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ffrn (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)

Proof of Theorem ffrn
StepHypRef Expression
1 ffn 6584 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 6597 . 2 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 217 1 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ran crn 5581   Fn wfn 6413  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-f 6422
This theorem is referenced by:  fo2ndf  7933  mapsnd  8632  itg1val2  24753  selvval2lem4  40154  volicoff  43426  f1cof1b  44456  f1ocof1ob  44460  fundcmpsurbijinjpreimafv  44747
  Copyright terms: Public domain W3C validator