MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrn Structured version   Visualization version   GIF version

Theorem ffrn 6736
Description: A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ffrn (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)

Proof of Theorem ffrn
StepHypRef Expression
1 ffn 6722 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 6735 . 2 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 217 1 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ran crn 5679   Fn wfn 6543  wf 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964  df-f 6552
This theorem is referenced by:  fo2ndf  8126  mapsnd  8904  itg1val2  25612  aks6d1c6lem3  41644  volicoff  45383  f1cof1b  46457  f1ocof1ob  46461  fundcmpsurbijinjpreimafv  46747
  Copyright terms: Public domain W3C validator