MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrn Structured version   Visualization version   GIF version

Theorem ffrn 6701
Description: A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ffrn (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)

Proof of Theorem ffrn
StepHypRef Expression
1 ffn 6688 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 6700 . 2 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 218 1 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ran crn 5639   Fn wfn 6506  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3931  df-f 6515
This theorem is referenced by:  fo2ndf  8100  mapsnd  8859  itg1val2  25585  aks6d1c6lem3  42160  volicoff  45993  f1cof1b  47078  f1ocof1ob  47082  fundcmpsurbijinjpreimafv  47408
  Copyright terms: Public domain W3C validator