![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffrn | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ffrn | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | dffn3 6759 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 df-f 6577 |
This theorem is referenced by: fo2ndf 8162 mapsnd 8944 itg1val2 25738 aks6d1c6lem3 42129 volicoff 45916 f1cof1b 46992 f1ocof1ob 46996 fundcmpsurbijinjpreimafv 47281 |
Copyright terms: Public domain | W3C validator |