![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffrnbd | Structured version Visualization version GIF version |
Description: A function maps to its range iff the range is a subset of its codomain. Generalization of ffrn 6722. (Contributed by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
ffrnbd.r | β’ (π β ran πΉ β π΅) |
Ref | Expression |
---|---|
ffrnbd | β’ (π β (πΉ:π΄βΆπ΅ β πΉ:π΄βΆran πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrnb 6723 | . 2 β’ (πΉ:π΄βΆπ΅ β (πΉ:π΄βΆran πΉ β§ ran πΉ β π΅)) | |
2 | ffrnbd.r | . . 3 β’ (π β ran πΉ β π΅) | |
3 | 2 | biantrud 531 | . 2 β’ (π β (πΉ:π΄βΆran πΉ β (πΉ:π΄βΆran πΉ β§ ran πΉ β π΅))) |
4 | 1, 3 | bitr4id 290 | 1 β’ (π β (πΉ:π΄βΆπ΅ β πΉ:π΄βΆran πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wss 3941 ran crn 5668 βΆwf 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-ss 3958 df-f 6538 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |