MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffrnbd Structured version   Visualization version   GIF version

Theorem ffrnbd 6685
Description: A function maps to its range iff the the range is a subset of its codomain. Generalization of ffrn 6683. (Contributed by AV, 20-Sep-2024.)
Hypothesis
Ref Expression
ffrnbd.r (πœ‘ β†’ ran 𝐹 βŠ† 𝐡)
Assertion
Ref Expression
ffrnbd (πœ‘ β†’ (𝐹:𝐴⟢𝐡 ↔ 𝐹:𝐴⟢ran 𝐹))

Proof of Theorem ffrnbd
StepHypRef Expression
1 ffrnb 6684 . 2 (𝐹:𝐴⟢𝐡 ↔ (𝐹:𝐴⟢ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡))
2 ffrnbd.r . . 3 (πœ‘ β†’ ran 𝐹 βŠ† 𝐡)
32biantrud 533 . 2 (πœ‘ β†’ (𝐹:𝐴⟢ran 𝐹 ↔ (𝐹:𝐴⟢ran 𝐹 ∧ ran 𝐹 βŠ† 𝐡)))
41, 3bitr4id 290 1 (πœ‘ β†’ (𝐹:𝐴⟢𝐡 ↔ 𝐹:𝐴⟢ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   βŠ† wss 3911  ran crn 5635  βŸΆwf 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-in 3918  df-ss 3928  df-f 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator