![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffrnbd | Structured version Visualization version GIF version |
Description: A function maps to its range iff the range is a subset of its codomain. Generalization of ffrn 6731. (Contributed by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
ffrnbd.r | β’ (π β ran πΉ β π΅) |
Ref | Expression |
---|---|
ffrnbd | β’ (π β (πΉ:π΄βΆπ΅ β πΉ:π΄βΆran πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrnb 6732 | . 2 β’ (πΉ:π΄βΆπ΅ β (πΉ:π΄βΆran πΉ β§ ran πΉ β π΅)) | |
2 | ffrnbd.r | . . 3 β’ (π β ran πΉ β π΅) | |
3 | 2 | biantrud 532 | . 2 β’ (π β (πΉ:π΄βΆran πΉ β (πΉ:π΄βΆran πΉ β§ ran πΉ β π΅))) |
4 | 1, 3 | bitr4id 289 | 1 β’ (π β (πΉ:π΄βΆπ΅ β πΉ:π΄βΆran πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wss 3948 ran crn 5677 βΆwf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-f 6547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |