MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn3 Structured version   Visualization version   GIF version

Theorem dffn3 6682
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.)
Assertion
Ref Expression
dffn3 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)

Proof of Theorem dffn3
StepHypRef Expression
1 ssid 3966 . . 3 ran 𝐹 ⊆ ran 𝐹
21biantru 529 . 2 (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹))
3 df-f 6503 . 2 (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹))
42, 3bitr4i 278 1 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3911  ran crn 5632   Fn wfn 6494  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3928  df-f 6503
This theorem is referenced by:  ffrn  6683  ffrnb  6684  fsn2  7090  coof  7657  offsplitfpar  8075  fo2ndf  8077  suppcoss  8163  fndmfisuppfi  9304  fndmfifsupp  9305  fin23lem17  10267  fin23lem32  10273  fnct  10466  yoniso  18222  psdmplcl  22025  1stckgen  23417  ovolicc2  25399  i1fadd  25572  i1fmul  25573  itg1addlem4  25576  i1fmulc  25580  clwlkclwwlklem2  29902  foresf1o  32406  fcoinver  32506  ofpreima2  32563  fmptunsnop  32596  suppssnn0  32703  locfinreflem  33803  pl1cn  33918  fvineqsneu  37372  poimirlem29  37616  poimirlem30  37617  itg2addnclem2  37639  mapdcl  41620  aks6d1c6isolem2  42136  tfsconcatrev  43310  wessf1ornlem  45152  unirnmap  45175  fsneqrn  45178  icccncfext  45858  stoweidlem29  46000  stoweidlem31  46002  stoweidlem59  46030  subsaliuncllem  46328  meadjiunlem  46436  uniimaprimaeqfv  47356  uniimaelsetpreimafv  47370
  Copyright terms: Public domain W3C validator