![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4018 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6567 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3980 df-f 6567 |
This theorem is referenced by: ffrn 6750 ffrnb 6751 fsn2 7156 coof 7721 offsplitfpar 8143 fo2ndf 8145 suppcoss 8231 fndmfisuppfi 9415 fndmfifsupp 9416 fin23lem17 10376 fin23lem32 10382 fnct 10575 yoniso 18342 psdmplcl 22184 1stckgen 23578 ovolicc2 25571 i1fadd 25744 i1fmul 25745 itg1addlem4 25748 itg1addlem4OLD 25749 i1fmulc 25753 clwlkclwwlklem2 30029 foresf1o 32532 fcoinver 32624 ofpreima2 32683 fmptunsnop 32715 suppssnn0 32815 locfinreflem 33801 pl1cn 33916 fvineqsneu 37394 poimirlem29 37636 poimirlem30 37637 itg2addnclem2 37659 mapdcl 41636 aks6d1c6isolem2 42157 tfsconcatrev 43338 wessf1ornlem 45128 unirnmap 45151 fsneqrn 45154 icccncfext 45843 stoweidlem29 45985 stoweidlem31 45987 stoweidlem59 46015 subsaliuncllem 46313 meadjiunlem 46421 uniimaprimaeqfv 47307 uniimaelsetpreimafv 47321 |
Copyright terms: Public domain | W3C validator |