| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6480 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3897 ran crn 5612 Fn wfn 6471 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3914 df-f 6480 |
| This theorem is referenced by: ffrn 6659 ffrnb 6660 fsn2 7064 coof 7629 offsplitfpar 8044 fo2ndf 8046 suppcoss 8132 fndmfisuppfi 9256 fndmfifsupp 9257 fin23lem17 10224 fin23lem32 10230 fnct 10423 yoniso 18186 psdmplcl 22072 1stckgen 23464 ovolicc2 25445 i1fadd 25618 i1fmul 25619 itg1addlem4 25622 i1fmulc 25626 clwlkclwwlklem2 29972 foresf1o 32476 fcoinver 32576 ofpreima2 32640 fmptunsnop 32673 suppssnn0 32779 locfinreflem 33845 pl1cn 33960 fvineqsneu 37445 poimirlem29 37689 poimirlem30 37690 itg2addnclem2 37712 mapdcl 41692 aks6d1c6isolem2 42208 tfsconcatrev 43381 wessf1ornlem 45222 unirnmap 45245 fsneqrn 45248 icccncfext 45925 stoweidlem29 46067 stoweidlem31 46069 stoweidlem59 46097 subsaliuncllem 46395 meadjiunlem 46503 uniimaprimaeqfv 47413 uniimaelsetpreimafv 47427 |
| Copyright terms: Public domain | W3C validator |