| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6503 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3928 df-f 6503 |
| This theorem is referenced by: ffrn 6683 ffrnb 6684 fsn2 7090 coof 7657 offsplitfpar 8075 fo2ndf 8077 suppcoss 8163 fndmfisuppfi 9304 fndmfifsupp 9305 fin23lem17 10267 fin23lem32 10273 fnct 10466 yoniso 18222 psdmplcl 22025 1stckgen 23417 ovolicc2 25399 i1fadd 25572 i1fmul 25573 itg1addlem4 25576 i1fmulc 25580 clwlkclwwlklem2 29902 foresf1o 32406 fcoinver 32506 ofpreima2 32563 fmptunsnop 32596 suppssnn0 32703 locfinreflem 33803 pl1cn 33918 fvineqsneu 37372 poimirlem29 37616 poimirlem30 37617 itg2addnclem2 37639 mapdcl 41620 aks6d1c6isolem2 42136 tfsconcatrev 43310 wessf1ornlem 45152 unirnmap 45175 fsneqrn 45178 icccncfext 45858 stoweidlem29 46000 stoweidlem31 46002 stoweidlem59 46030 subsaliuncllem 46328 meadjiunlem 46436 uniimaprimaeqfv 47356 uniimaelsetpreimafv 47370 |
| Copyright terms: Public domain | W3C validator |