| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6515 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3914 ran crn 5639 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3931 df-f 6515 |
| This theorem is referenced by: ffrn 6701 ffrnb 6702 fsn2 7108 coof 7677 offsplitfpar 8098 fo2ndf 8100 suppcoss 8186 fndmfisuppfi 9328 fndmfifsupp 9329 fin23lem17 10291 fin23lem32 10297 fnct 10490 yoniso 18246 psdmplcl 22049 1stckgen 23441 ovolicc2 25423 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 i1fmulc 25604 clwlkclwwlklem2 29929 foresf1o 32433 fcoinver 32533 ofpreima2 32590 fmptunsnop 32623 suppssnn0 32730 locfinreflem 33830 pl1cn 33945 fvineqsneu 37399 poimirlem29 37643 poimirlem30 37644 itg2addnclem2 37666 mapdcl 41647 aks6d1c6isolem2 42163 tfsconcatrev 43337 wessf1ornlem 45179 unirnmap 45202 fsneqrn 45205 icccncfext 45885 stoweidlem29 46027 stoweidlem31 46029 stoweidlem59 46057 subsaliuncllem 46355 meadjiunlem 46463 uniimaprimaeqfv 47383 uniimaelsetpreimafv 47397 |
| Copyright terms: Public domain | W3C validator |