Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3953 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6477 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3897 ran crn 5615 Fn wfn 6468 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3904 df-ss 3914 df-f 6477 |
This theorem is referenced by: ffrn 6659 ffrnb 6660 fsn2 7058 offsplitfpar 8019 fo2ndf 8021 suppcoss 8085 fndmfisuppfi 9230 fndmfifsupp 9231 fin23lem17 10187 fin23lem32 10193 fnct 10386 yoniso 18092 1stckgen 22803 ovolicc2 24784 i1fadd 24957 i1fmul 24958 itg1addlem4 24961 itg1addlem4OLD 24962 i1fmulc 24966 clwlkclwwlklem2 28593 foresf1o 31079 fcoinver 31174 ofpreima2 31231 locfinreflem 32029 pl1cn 32144 fvineqsneu 35680 poimirlem29 35904 poimirlem30 35905 itg2addnclem2 35927 mapdcl 39914 wessf1ornlem 43038 unirnmap 43064 fsneqrn 43067 icccncfext 43753 stoweidlem29 43895 stoweidlem31 43897 stoweidlem59 43925 subsaliuncllem 44221 meadjiunlem 44329 uniimaprimaeqfv 45174 uniimaelsetpreimafv 45188 |
Copyright terms: Public domain | W3C validator |