Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6422 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊆ wss 3883 ran crn 5581 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 |
This theorem is referenced by: ffrn 6598 ffrnb 6599 fsn2 6990 offsplitfpar 7931 fo2ndf 7933 suppcoss 7994 fndmfisuppfi 9070 fndmfifsupp 9071 fin23lem17 10025 fin23lem32 10031 fnct 10224 yoniso 17919 1stckgen 22613 ovolicc2 24591 i1fadd 24764 i1fmul 24765 itg1addlem4 24768 itg1addlem4OLD 24769 i1fmulc 24773 clwlkclwwlklem2 28265 foresf1o 30751 fcoinver 30847 ofpreima2 30905 locfinreflem 31692 pl1cn 31807 fvineqsneu 35509 poimirlem29 35733 poimirlem30 35734 itg2addnclem2 35756 mapdcl 39594 wessf1ornlem 42611 unirnmap 42637 fsneqrn 42640 icccncfext 43318 stoweidlem29 43460 stoweidlem31 43462 stoweidlem59 43490 subsaliuncllem 43786 meadjiunlem 43893 uniimaprimaeqfv 44722 uniimaelsetpreimafv 44736 |
Copyright terms: Public domain | W3C validator |