| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3958 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6486 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3903 ran crn 5620 Fn wfn 6477 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3920 df-f 6486 |
| This theorem is referenced by: ffrn 6665 ffrnb 6666 fsn2 7070 coof 7637 offsplitfpar 8052 fo2ndf 8054 suppcoss 8140 fndmfisuppfi 9267 fndmfifsupp 9268 fin23lem17 10232 fin23lem32 10238 fnct 10431 yoniso 18191 psdmplcl 22047 1stckgen 23439 ovolicc2 25421 i1fadd 25594 i1fmul 25595 itg1addlem4 25598 i1fmulc 25602 clwlkclwwlklem2 29944 foresf1o 32448 fcoinver 32548 ofpreima2 32609 fmptunsnop 32642 suppssnn0 32750 locfinreflem 33807 pl1cn 33922 fvineqsneu 37385 poimirlem29 37629 poimirlem30 37630 itg2addnclem2 37652 mapdcl 41632 aks6d1c6isolem2 42148 tfsconcatrev 43321 wessf1ornlem 45163 unirnmap 45186 fsneqrn 45189 icccncfext 45868 stoweidlem29 46010 stoweidlem31 46012 stoweidlem59 46040 subsaliuncllem 46338 meadjiunlem 46446 uniimaprimaeqfv 47366 uniimaelsetpreimafv 47380 |
| Copyright terms: Public domain | W3C validator |