Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3923 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 533 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6384 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 281 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ⊆ wss 3866 ran crn 5552 Fn wfn 6375 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-f 6384 |
This theorem is referenced by: ffrn 6559 ffrnb 6560 fsn2 6951 offsplitfpar 7888 fo2ndf 7890 suppcoss 7949 fndmfisuppfi 8997 fndmfifsupp 8998 fin23lem17 9952 fin23lem32 9958 fnct 10151 yoniso 17793 1stckgen 22451 ovolicc2 24419 i1fadd 24592 i1fmul 24593 itg1addlem4 24596 itg1addlem4OLD 24597 i1fmulc 24601 clwlkclwwlklem2 28083 foresf1o 30569 fcoinver 30665 ofpreima2 30723 locfinreflem 31504 pl1cn 31619 fvineqsneu 35319 poimirlem29 35543 poimirlem30 35544 itg2addnclem2 35566 mapdcl 39404 wessf1ornlem 42395 unirnmap 42421 fsneqrn 42424 icccncfext 43103 stoweidlem29 43245 stoweidlem31 43247 stoweidlem59 43275 subsaliuncllem 43571 meadjiunlem 43678 uniimaprimaeqfv 44507 uniimaelsetpreimafv 44521 |
Copyright terms: Public domain | W3C validator |