| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6535 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3926 ran crn 5655 Fn wfn 6526 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3943 df-f 6535 |
| This theorem is referenced by: ffrn 6719 ffrnb 6720 fsn2 7126 coof 7695 offsplitfpar 8118 fo2ndf 8120 suppcoss 8206 fndmfisuppfi 9389 fndmfifsupp 9390 fin23lem17 10352 fin23lem32 10358 fnct 10551 yoniso 18297 psdmplcl 22100 1stckgen 23492 ovolicc2 25475 i1fadd 25648 i1fmul 25649 itg1addlem4 25652 i1fmulc 25656 clwlkclwwlklem2 29981 foresf1o 32485 fcoinver 32585 ofpreima2 32644 fmptunsnop 32677 suppssnn0 32784 locfinreflem 33871 pl1cn 33986 fvineqsneu 37429 poimirlem29 37673 poimirlem30 37674 itg2addnclem2 37696 mapdcl 41672 aks6d1c6isolem2 42188 tfsconcatrev 43372 wessf1ornlem 45209 unirnmap 45232 fsneqrn 45235 icccncfext 45916 stoweidlem29 46058 stoweidlem31 46060 stoweidlem59 46088 subsaliuncllem 46386 meadjiunlem 46494 uniimaprimaeqfv 47396 uniimaelsetpreimafv 47410 |
| Copyright terms: Public domain | W3C validator |