| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version | ||
| Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
| Ref | Expression |
|---|---|
| dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
| 3 | df-f 6518 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3934 df-f 6518 |
| This theorem is referenced by: ffrn 6704 ffrnb 6705 fsn2 7111 coof 7680 offsplitfpar 8101 fo2ndf 8103 suppcoss 8189 fndmfisuppfi 9335 fndmfifsupp 9336 fin23lem17 10298 fin23lem32 10304 fnct 10497 yoniso 18253 psdmplcl 22056 1stckgen 23448 ovolicc2 25430 i1fadd 25603 i1fmul 25604 itg1addlem4 25607 i1fmulc 25611 clwlkclwwlklem2 29936 foresf1o 32440 fcoinver 32540 ofpreima2 32597 fmptunsnop 32630 suppssnn0 32737 locfinreflem 33837 pl1cn 33952 fvineqsneu 37406 poimirlem29 37650 poimirlem30 37651 itg2addnclem2 37673 mapdcl 41654 aks6d1c6isolem2 42170 tfsconcatrev 43344 wessf1ornlem 45186 unirnmap 45209 fsneqrn 45212 icccncfext 45892 stoweidlem29 46034 stoweidlem31 46036 stoweidlem59 46064 subsaliuncllem 46362 meadjiunlem 46470 uniimaprimaeqfv 47387 uniimaelsetpreimafv 47401 |
| Copyright terms: Public domain | W3C validator |