![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 df-f 6577 |
This theorem is referenced by: ffrn 6760 ffrnb 6761 fsn2 7170 coof 7737 offsplitfpar 8160 fo2ndf 8162 suppcoss 8248 fndmfisuppfi 9446 fndmfifsupp 9447 fin23lem17 10407 fin23lem32 10413 fnct 10606 yoniso 18355 psdmplcl 22189 1stckgen 23583 ovolicc2 25576 i1fadd 25749 i1fmul 25750 itg1addlem4 25753 itg1addlem4OLD 25754 i1fmulc 25758 clwlkclwwlklem2 30032 foresf1o 32532 fcoinver 32626 ofpreima2 32684 suppssnn0 32812 locfinreflem 33786 pl1cn 33901 fvineqsneu 37377 poimirlem29 37609 poimirlem30 37610 itg2addnclem2 37632 mapdcl 41610 aks6d1c6isolem2 42132 tfsconcatrev 43310 wessf1ornlem 45092 unirnmap 45115 fsneqrn 45118 icccncfext 45808 stoweidlem29 45950 stoweidlem31 45952 stoweidlem59 45980 subsaliuncllem 46278 meadjiunlem 46386 uniimaprimaeqfv 47256 uniimaelsetpreimafv 47270 |
Copyright terms: Public domain | W3C validator |