Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3944 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6441 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3888 ran crn 5591 Fn wfn 6432 ⟶wf 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-f 6441 |
This theorem is referenced by: ffrn 6623 ffrnb 6624 fsn2 7017 offsplitfpar 7969 fo2ndf 7971 suppcoss 8032 fndmfisuppfi 9149 fndmfifsupp 9150 fin23lem17 10103 fin23lem32 10109 fnct 10302 yoniso 18012 1stckgen 22714 ovolicc2 24695 i1fadd 24868 i1fmul 24869 itg1addlem4 24872 itg1addlem4OLD 24873 i1fmulc 24877 clwlkclwwlklem2 28373 foresf1o 30859 fcoinver 30955 ofpreima2 31012 locfinreflem 31799 pl1cn 31914 fvineqsneu 35591 poimirlem29 35815 poimirlem30 35816 itg2addnclem2 35838 mapdcl 39674 wessf1ornlem 42729 unirnmap 42755 fsneqrn 42758 icccncfext 43435 stoweidlem29 43577 stoweidlem31 43579 stoweidlem59 43607 subsaliuncllem 43903 meadjiunlem 44010 uniimaprimaeqfv 44845 uniimaelsetpreimafv 44859 |
Copyright terms: Public domain | W3C validator |