![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2c | Structured version Visualization version GIF version |
Description: Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55lem2c | ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3418 | . . 3 ⊢ 𝑥 ∈ V | |
2 | 1 | frege54cor1c 39050 | . 2 ⊢ [𝑥 / 𝑧]𝑧 = 𝑥 |
3 | frege53c 39049 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 Vcvv 3415 [wsbc 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 ax-frege8 38944 ax-frege52c 39023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-v 3417 df-sbc 3664 df-sn 4399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |