Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem2c Structured version   Visualization version   GIF version

Theorem frege55lem2c 43907
Description: Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55lem2c (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem frege55lem2c
StepHypRef Expression
1 vex 3482 . . 3 𝑥 ∈ V
21frege54cor1c 43905 . 2 [𝑥 / 𝑧]𝑧 = 𝑥
3 frege53c 43904 . 2 ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥))
42, 3ax-mp 5 1 (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3478  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-frege8 43799  ax-frege52c 43878
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-sbc 3792  df-sn 4632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator