Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem2c Structured version   Visualization version   GIF version

Theorem frege55lem2c 41202
Description: Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55lem2c (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥)
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem frege55lem2c
StepHypRef Expression
1 vex 3412 . . 3 𝑥 ∈ V
21frege54cor1c 41200 . 2 [𝑥 / 𝑧]𝑧 = 𝑥
3 frege53c 41199 . 2 ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥))
42, 3ax-mp 5 1 (𝑥 = 𝐴[𝐴 / 𝑧]𝑧 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  Vcvv 3408  [wsbc 3694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-frege8 41094  ax-frege52c 41173
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-sbc 3695  df-sn 4542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator