Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem1c Structured version   Visualization version   GIF version

Theorem frege55lem1c 41524
Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
frege55lem1c ((𝜑[𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem frege55lem1c
StepHypRef Expression
1 df-sbc 3717 . . 3 ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 ∈ {𝑥𝑥 = 𝐵})
2 eqeq1 2742 . . . . 5 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
32elabg 3607 . . . 4 (𝐴 ∈ {𝑥𝑥 = 𝐵} → (𝐴 ∈ {𝑥𝑥 = 𝐵} ↔ 𝐴 = 𝐵))
43ibi 266 . . 3 (𝐴 ∈ {𝑥𝑥 = 𝐵} → 𝐴 = 𝐵)
51, 4sylbi 216 . 2 ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵)
65imim2i 16 1 ((𝜑[𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  frege56c  41527
  Copyright terms: Public domain W3C validator