Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem1c | Structured version Visualization version GIF version |
Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
frege55lem1c | ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3717 | . . 3 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵}) | |
2 | eqeq1 2742 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 2 | elabg 3607 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} → (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} ↔ 𝐴 = 𝐵)) |
4 | 3 | ibi 266 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} → 𝐴 = 𝐵) |
5 | 1, 4 | sylbi 216 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐵 → 𝐴 = 𝐵) |
6 | 5 | imim2i 16 | 1 ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: frege56c 41527 |
Copyright terms: Public domain | W3C validator |