| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem1c | Structured version Visualization version GIF version | ||
| Description: Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| frege55lem1c | ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3737 | . . 3 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵}) | |
| 2 | eqeq1 2735 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 2 | elabg 3627 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} → (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} ↔ 𝐴 = 𝐵)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐵} → 𝐴 = 𝐵) |
| 5 | 1, 4 | sylbi 217 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐵 → 𝐴 = 𝐵) |
| 6 | 5 | imim2i 16 | 1 ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: frege56c 43960 |
| Copyright terms: Public domain | W3C validator |