| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege54cor1c | Structured version Visualization version GIF version | ||
| Description: Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| frege54c.1 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| frege54cor1c | ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege54c.1 | . . . . 5 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | 1 | elexi 3487 | . . . 4 ⊢ 𝐴 ∈ V |
| 3 | 2 | snid 4644 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 4 | df-sn 4609 | . . 3 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
| 5 | 3, 4 | eleqtri 2831 | . 2 ⊢ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴} |
| 6 | df-sbc 3773 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴}) | |
| 7 | 5, 6 | mpbir 231 | 1 ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2712 [wsbc 3772 {csn 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-sbc 3773 df-sn 4609 |
| This theorem is referenced by: frege55lem2c 43875 frege55c 43876 frege56c 43877 |
| Copyright terms: Public domain | W3C validator |