![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege54cor1c | Structured version Visualization version GIF version |
Description: Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
frege54c.1 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
frege54cor1c | ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege54c.1 | . . . . 5 ⊢ 𝐴 ∈ 𝐶 | |
2 | 1 | elexi 3493 | . . . 4 ⊢ 𝐴 ∈ V |
3 | 2 | snid 4663 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
4 | df-sn 4628 | . . 3 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
5 | 3, 4 | eleqtri 2831 | . 2 ⊢ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴} |
6 | df-sbc 3777 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴}) | |
7 | 5, 6 | mpbir 230 | 1 ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2709 [wsbc 3776 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-sbc 3777 df-sn 4628 |
This theorem is referenced by: frege55lem2c 42653 frege55c 42654 frege56c 42655 |
Copyright terms: Public domain | W3C validator |