| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege54cor1c | Structured version Visualization version GIF version | ||
| Description: Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| frege54c.1 | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| frege54cor1c | ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege54c.1 | . . . . 5 ⊢ 𝐴 ∈ 𝐶 | |
| 2 | 1 | elexi 3459 | . . . 4 ⊢ 𝐴 ∈ V |
| 3 | 2 | snid 4610 | . . 3 ⊢ 𝐴 ∈ {𝐴} |
| 4 | df-sn 4572 | . . 3 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
| 5 | 3, 4 | eleqtri 2829 | . 2 ⊢ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴} |
| 6 | df-sbc 3737 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑥 ∣ 𝑥 = 𝐴}) | |
| 7 | 5, 6 | mpbir 231 | 1 ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3736 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-sn 4572 |
| This theorem is referenced by: frege55lem2c 43950 frege55c 43951 frege56c 43952 |
| Copyright terms: Public domain | W3C validator |