Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege54cor1c Structured version   Visualization version   GIF version

Theorem frege54cor1c 41412
Description: Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.)
Hypothesis
Ref Expression
frege54c.1 𝐴𝐶
Assertion
Ref Expression
frege54cor1c [𝐴 / 𝑥]𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frege54cor1c
StepHypRef Expression
1 frege54c.1 . . . . 5 𝐴𝐶
21elexi 3441 . . . 4 𝐴 ∈ V
32snid 4594 . . 3 𝐴 ∈ {𝐴}
4 df-sn 4559 . . 3 {𝐴} = {𝑥𝑥 = 𝐴}
53, 4eleqtri 2837 . 2 𝐴 ∈ {𝑥𝑥 = 𝐴}
6 df-sbc 3712 . 2 ([𝐴 / 𝑥]𝑥 = 𝐴𝐴 ∈ {𝑥𝑥 = 𝐴})
75, 6mpbir 230 1 [𝐴 / 𝑥]𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  [wsbc 3711  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712  df-sn 4559
This theorem is referenced by:  frege55lem2c  41414  frege55c  41415  frege56c  41416
  Copyright terms: Public domain W3C validator