| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55c | Structured version Visualization version GIF version | ||
| Description: Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege55c | ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | frege54cor1c 43956 | . . 3 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 |
| 3 | frege53c 43955 | . . 3 ⊢ ([𝑥 / 𝑦]𝑦 = 𝑥 → (𝑥 = 𝐴 → [𝐴 / 𝑦]𝑦 = 𝑥)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑦]𝑦 = 𝑥) |
| 5 | df-sbc 3737 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ 𝐴 ∈ {𝑦 ∣ 𝑦 = 𝑥}) | |
| 6 | clelab 2876 | . . . 4 ⊢ (𝐴 ∈ {𝑦 ∣ 𝑦 = 𝑥} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥)) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥)) |
| 8 | eqtr2 2752 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = 𝑥) | |
| 9 | 8 | exlimiv 1931 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = 𝑥) |
| 10 | 7, 9 | sylbi 217 | . 2 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 → 𝐴 = 𝑥) |
| 11 | 4, 10 | syl 17 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-frege8 43850 ax-frege52c 43929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-sn 4574 |
| This theorem is referenced by: frege104 44008 |
| Copyright terms: Public domain | W3C validator |