Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55c Structured version   Visualization version   GIF version

Theorem frege55c 43876
Description: Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55c (𝑥 = 𝐴𝐴 = 𝑥)

Proof of Theorem frege55c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . 4 𝑥 ∈ V
21frege54cor1c 43873 . . 3 [𝑥 / 𝑦]𝑦 = 𝑥
3 frege53c 43872 . . 3 ([𝑥 / 𝑦]𝑦 = 𝑥 → (𝑥 = 𝐴[𝐴 / 𝑦]𝑦 = 𝑥))
42, 3ax-mp 5 . 2 (𝑥 = 𝐴[𝐴 / 𝑦]𝑦 = 𝑥)
5 df-sbc 3773 . . . 4 ([𝐴 / 𝑦]𝑦 = 𝑥𝐴 ∈ {𝑦𝑦 = 𝑥})
6 clelab 2879 . . . 4 (𝐴 ∈ {𝑦𝑦 = 𝑥} ↔ ∃𝑦(𝑦 = 𝐴𝑦 = 𝑥))
75, 6bitri 275 . . 3 ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ ∃𝑦(𝑦 = 𝐴𝑦 = 𝑥))
8 eqtr2 2755 . . . 4 ((𝑦 = 𝐴𝑦 = 𝑥) → 𝐴 = 𝑥)
98exlimiv 1929 . . 3 (∃𝑦(𝑦 = 𝐴𝑦 = 𝑥) → 𝐴 = 𝑥)
107, 9sylbi 217 . 2 ([𝐴 / 𝑦]𝑦 = 𝑥𝐴 = 𝑥)
114, 10syl 17 1 (𝑥 = 𝐴𝐴 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2712  Vcvv 3464  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-frege8 43767  ax-frege52c 43846
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-sbc 3773  df-sn 4609
This theorem is referenced by:  frege104  43925
  Copyright terms: Public domain W3C validator