Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55c Structured version   Visualization version   GIF version

Theorem frege55c 39627
Description: Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55c (𝑥 = 𝐴𝐴 = 𝑥)

Proof of Theorem frege55c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3418 . . . 4 𝑥 ∈ V
21frege54cor1c 39624 . . 3 [𝑥 / 𝑦]𝑦 = 𝑥
3 frege53c 39623 . . 3 ([𝑥 / 𝑦]𝑦 = 𝑥 → (𝑥 = 𝐴[𝐴 / 𝑦]𝑦 = 𝑥))
42, 3ax-mp 5 . 2 (𝑥 = 𝐴[𝐴 / 𝑦]𝑦 = 𝑥)
5 df-sbc 3684 . . . 4 ([𝐴 / 𝑦]𝑦 = 𝑥𝐴 ∈ {𝑦𝑦 = 𝑥})
6 clelab 2913 . . . 4 (𝐴 ∈ {𝑦𝑦 = 𝑥} ↔ ∃𝑦(𝑦 = 𝐴𝑦 = 𝑥))
75, 6bitri 267 . . 3 ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ ∃𝑦(𝑦 = 𝐴𝑦 = 𝑥))
8 eqtr2 2800 . . . 4 ((𝑦 = 𝐴𝑦 = 𝑥) → 𝐴 = 𝑥)
98exlimiv 1889 . . 3 (∃𝑦(𝑦 = 𝐴𝑦 = 𝑥) → 𝐴 = 𝑥)
107, 9sylbi 209 . 2 ([𝐴 / 𝑦]𝑦 = 𝑥𝐴 = 𝑥)
114, 10syl 17 1 (𝑥 = 𝐴𝐴 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wex 1742  wcel 2050  {cab 2758  Vcvv 3415  [wsbc 3683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750  ax-frege8 39518  ax-frege52c 39597
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-v 3417  df-sbc 3684  df-sn 4443
This theorem is referenced by:  frege104  39676
  Copyright terms: Public domain W3C validator