![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55c | Structured version Visualization version GIF version |
Description: Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55c | ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | frege54cor1c 43877 | . . 3 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 |
3 | frege53c 43876 | . . 3 ⊢ ([𝑥 / 𝑦]𝑦 = 𝑥 → (𝑥 = 𝐴 → [𝐴 / 𝑦]𝑦 = 𝑥)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑦]𝑦 = 𝑥) |
5 | df-sbc 3805 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ 𝐴 ∈ {𝑦 ∣ 𝑦 = 𝑥}) | |
6 | clelab 2890 | . . . 4 ⊢ (𝐴 ∈ {𝑦 ∣ 𝑦 = 𝑥} ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥)) | |
7 | 5, 6 | bitri 275 | . . 3 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥)) |
8 | eqtr2 2764 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = 𝑥) | |
9 | 8 | exlimiv 1929 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝑥) → 𝐴 = 𝑥) |
10 | 7, 9 | sylbi 217 | . 2 ⊢ ([𝐴 / 𝑦]𝑦 = 𝑥 → 𝐴 = 𝑥) |
11 | 4, 10 | syl 17 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-frege8 43771 ax-frege52c 43850 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-sn 4649 |
This theorem is referenced by: frege104 43929 |
Copyright terms: Public domain | W3C validator |