![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56b | Structured version Visualization version GIF version |
Description: Lemma for frege57b 39032. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege56b | ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege55b 39030 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | frege9 38945 | . 2 ⊢ ((𝑦 = 𝑥 → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-12 2220 ax-13 2389 ax-ext 2803 ax-frege1 38923 ax-frege2 38924 ax-frege8 38942 ax-frege52c 39021 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-sbc 3663 |
This theorem is referenced by: frege57b 39032 |
Copyright terms: Public domain | W3C validator |