| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege57b 44002. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege56b | ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege55b 44000 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | frege9 43915 | . 2 ⊢ ((𝑦 = 𝑥 → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-13 2372 ax-ext 2703 ax-frege1 43893 ax-frege2 43894 ax-frege8 43912 ax-frege52c 43991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: frege57b 44002 |
| Copyright terms: Public domain | W3C validator |