| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57c | Structured version Visualization version GIF version | ||
| Description: Swap order of implication in ax-frege52c 43879. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege57c.a | ⊢ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| frege57c | ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege52c 43879 | . 2 ⊢ (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 2 | frege57c.a | . . 3 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | 2 | frege56c 43910 | . 2 ⊢ ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑))) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-frege1 43781 ax-frege2 43782 ax-frege8 43800 ax-frege52c 43879 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sbc 3771 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |