Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege57c Structured version   Visualization version   GIF version

Theorem frege57c 41390
Description: Swap order of implication in ax-frege52c 41358. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege57c.a 𝐴𝐶
Assertion
Ref Expression
frege57c (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem frege57c
StepHypRef Expression
1 ax-frege52c 41358 . 2 (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 frege57c.a . . 3 𝐴𝐶
32frege56c 41389 . 2 ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
41, 3ax-mp 5 1 (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279  ax-frege52c 41358
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-sbc 3713  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator