![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57c | Structured version Visualization version GIF version |
Description: Swap order of implication in ax-frege52c 43212. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege57c.a | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
frege57c | ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege52c 43212 | . 2 ⊢ (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
2 | frege57c.a | . . 3 ⊢ 𝐴 ∈ 𝐶 | |
3 | 2 | frege56c 43243 | . 2 ⊢ ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑))) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 [wsbc 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-frege1 43114 ax-frege2 43115 ax-frege8 43133 ax-frege52c 43212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-sbc 3773 df-sn 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |