|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57c | Structured version Visualization version GIF version | ||
| Description: Swap order of implication in ax-frege52c 43901. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege57c.a | ⊢ 𝐴 ∈ 𝐶 | 
| Ref | Expression | 
|---|---|
| frege57c | ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-frege52c 43901 | . 2 ⊢ (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 2 | frege57c.a | . . 3 ⊢ 𝐴 ∈ 𝐶 | |
| 3 | 2 | frege56c 43932 | . 2 ⊢ ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑))) | 
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-frege1 43803 ax-frege2 43804 ax-frege8 43822 ax-frege52c 43901 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 df-sn 4627 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |