Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege57c Structured version   Visualization version   GIF version

Theorem frege57c 43244
Description: Swap order of implication in ax-frege52c 43212. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege57c.a 𝐴𝐶
Assertion
Ref Expression
frege57c (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem frege57c
StepHypRef Expression
1 ax-frege52c 43212 . 2 (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 frege57c.a . . 3 𝐴𝐶
32frege56c 43243 . 2 ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
41, 3ax-mp 5 1 (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-frege1 43114  ax-frege2 43115  ax-frege8 43133  ax-frege52c 43212
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-sbc 3773  df-sn 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator