Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57c | Structured version Visualization version GIF version |
Description: Swap order of implication in ax-frege52c 41358. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege57c.a | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
frege57c | ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege52c 41358 | . 2 ⊢ (𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
2 | frege57c.a | . . 3 ⊢ 𝐴 ∈ 𝐶 | |
3 | 2 | frege56c 41389 | . 2 ⊢ ((𝐵 = 𝐴 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) → (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑))) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 [wsbc 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-frege1 41260 ax-frege2 41261 ax-frege8 41279 ax-frege52c 41358 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-sbc 3713 df-sn 4559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |